Search results for: solar and wind energy potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18796

Search results for: solar and wind energy potential

15046 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps

Authors: Arkadiusz Zurek

Abstract:

The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.

Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0

Procedia PDF Downloads 77
15045 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 544
15044 Study on Planning of Smart GRID Using Landscape Ecology

Authors: Sunglim Lee, Susumu Fujii, Koji Okamura

Abstract:

Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.

Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation

Procedia PDF Downloads 438
15043 A Strategic Approach for Promoting Renewable Energy Technologies in Developing Countries

Authors: Hanee Ryu

Abstract:

The supporting policies for renewable energy have been designed to deploy renewable energy technology targeting domestic market. The government encourages market creation through obligations such as FIT or RPS on an energy supplier. With these policy measures, the securing vast market needs to induce technology development. Furthermore, it is crucial that ensuring developing market can make the environment nurture the renewable energy industry. Overseas expansion to countries being in demand is essential under immature domestic market. Extending its business abroad can make the domestic company get the knowledge through learning-by-doing. Besides, operation in the countries to be rich in renewable resources such as weather conditions helps to develop proven track record required for verifying technologies. This paper figures out the factor to hamper the global market entry and build up the strategies to overcome difficulties. Survey conducted renewable energy company having overseas experiences at least once. Based on the survey we check the obstacle against exporting home goods and services. As a result, securing funds is salient fact to proceed to business. It is difficult that only private bank or investment agencies participate in the project under uncertainty which renewable energy development project bears inherently. These uncertainties need public fund such as ODA to encourage private sectors to start a business. Furthermore, international organizations such as IRENA or multilateral development banks as WBG play a role to guarantee the investment including risk insurance against uncertainty. It can also manage excavation business cooperating with developing countries and supplement inadequate government funding involved. With survey results strategies to obtain the order, the international organization places are categorized according to the type of getting a contract. This paper suggests 3 types approaching to the international organization project (going through international competitive bidding, using ODA and project financing) and specifies the role of government to support the domestic firms with running out of funds. Under renewable energy industry environment where hard to being created as a spontaneous market, government policy approach needs to motivate the actors to get into the business. It is one of the good strategies that countries with the low demand of renewable energies participate in the project international agencies order in the developing countries having abundant resources. This provides crucial guidance for the formulation of renewable energy development policy and planning with consideration of business opportunities and funding.

Keywords: exporting strategies, multilateral development banks, promoting in developing countries, renewable energy technologies

Procedia PDF Downloads 514
15042 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection

Authors: Bienvenu Gael Fouda Mbanga

Abstract:

This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.

Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection

Procedia PDF Downloads 114
15041 Meat Potential Indicators of Red Sokoto, Sahel and West African Dwarf Goat Based on Morphometrical Measurements

Authors: Ozioma Beauty Nwaodu, Adebowale E Salako, Omolara Mabel Akinyemi, Nkechi Uche, Isuama Isu, Uchechi Jane Elechi

Abstract:

Goats form an integral part of livestock production in the tropics. Meat potential is determined subjectively by resource poor livestock keepers, using hand to measure the rump width (RW). Objective evaluation of meat potential in different breads of goats can overcome problems associated with subjective evaluation. Hence, the objectives were to predict meatiness in Red Sokoto (RS), Sahel and the West African Dwarf (WAD) goats, using product of the body length (BL), wither height (WH) and (RW) and to indicate the inherent size of each breed, using WH: BL ratio. These three parameters were used because they are less environmentally sensitive. A total of 2849 goats were sampled purposefully from the Akinyele and Oranyan markets in Ibadan, Oyo State Nigeria. RS showed no significant difference for BL and WH but different from the RW of both sexes (p < 0.01). Similarly WAD showed no significant difference for the BL and WH, but differed (p < 0.01) between sexes for RW. Using the ANOVA, BL:WH ratio showed no significant difference between the breeds. WAD goats have the highest mean for BL:WH ratio. Western meat livestock is primarily identified using BL:WH. The combinations of these body parameters as indicator for meat type in meat animals showed that WAD goat has more potential to lay down meat, than RS and Sahel.

Keywords: quantitative, morphologial traits, descriptive analysis, goats

Procedia PDF Downloads 176
15040 Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods

Authors: Jeffrey Cacho, Sherwin Reyes

Abstract:

The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety.

Keywords: biomass roasting furnace, heat storage, combustion chute, start-up roasting business

Procedia PDF Downloads 46
15039 Simulation Approach for Analyzing Transportation Energy System in South Korea

Authors: Sungjun Hong, Youah Lee, Jongwook Kim

Abstract:

In the last COP21 held in Paris on 2015, Korean government announced that Intended Nationally Determined Contributions (INDC) was 37% based on BAU by 2030. The GHG reduction rate of the transportation sector is the strongest among all sectors by 2020. In order to cope with Korean INDC, Korean government established that 3rd eco-friendly car deployment national plans at the end of 2015. In this study, we make the energy system model for estimating GHG emissions using LEAP model.

Keywords: INDC, greenhouse gas, LEAP, transportation

Procedia PDF Downloads 202
15038 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study

Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli

Abstract:

This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).

Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils

Procedia PDF Downloads 96
15037 Immune Activity of Roman Hens as Influenced by the Feed Formulated with Germinated Paddy Rice

Authors: Wirot Likittrakulwong, Pisit Poolprasert, Tossaporn Incharoen

Abstract:

Germinated paddy rice (GPR) has the potential to be used as a feed ingredient. However, their properties have not been fully investigated. This paper examined the nutrient digestibility and the relationship to immune activity in Roman hens fed with GPR. It was found that true and apparent metabolizable energy (ME) values of GPR were 3.20 and 3.28 kcal/g air dry, respectively. GPR exhibited high content of phytonutrients, especially GABA. GPR showed similar protein profiles in comparison to non-germinated paddy rice. For immune activity, the feed with GPR enhanced the immune activity of Roman hens under high stocking density stress as evidenced by the activity of superoxide dismutase (SOD) and lysozyme activity. In this study, GPR is proved to be a good source of functional ingredient for chicken feed.

Keywords: germinated paddy rice, nutrient digestibility, immune activity, functional property

Procedia PDF Downloads 155
15036 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 469
15035 Municipal Solid Waste (MSW) Composition and Generation in Nablus City, Palestine

Authors: Issam A. Al-Khatib

Abstract:

In order to achieve a significant reduction of waste amount flowing into landfills, it is important to first understand the composition of the solid municipal waste generated. Hence a detailed analysis of municipal solid waste composition has been conducted in Nablus city. The aim is to provide data on the potential recyclable fractions in the actual waste stream, with a focus on the plastic fraction. Hence, waste-sorting campaigns were conducted on mixed waste containers from five districts in Nablus city. The districts vary in terms of infrastructure and average income. The target is to obtain representative data about the potential quantity and quality of household plastic waste. The study has measured the composition of municipal solid waste collected/ transported by Nablus municipality. The analysis was done by categorizing the samples into eight primary fractions (organic and food waste, paper and cardboard, glass, metals, textiles, plastic, a fine fraction (<10 mm), and others). The study results reveal that the MSW stream in Nablus city has a significant bio- and organic waste fraction (about 68% of the total MSW). The second largest fraction is paper and cardboard (13.6%), followed by plastics (10.1%), textiles (3.2%), glass (1.9%), metals (1.8%), a fine fraction (0.5%), and other waste (0.3%). After this complete and detailed characterization of MSW collected in Nablus and taking into account the content of biodegradable organic matter, the composting could be a solution for the city of Nablus where the surrounding areas of Nablus city have agricultural activities and could be a natural outlet to the compost product. Different waste management options could be practiced in the future in addition to composting, such as energy recovery and recycling, which result in a greater possibility of reducing substantial amounts that are disposed of at landfills.

Keywords: developing countries, composition, management, recyclable, waste.

Procedia PDF Downloads 85
15034 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic

Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy

Abstract:

We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.

Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases

Procedia PDF Downloads 462
15033 High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System

Authors: J. Lu, H. Li, F. Cole

Abstract:

This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided.

Keywords: brushes and slip rings, flywheel energy storage, high frequency rotary transformer, separately excited synchronous machine

Procedia PDF Downloads 26
15032 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid

Authors: Phuong Nguyen

Abstract:

Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.

Keywords: transient stability, uncertainties, renewable energy sources, analytical approach

Procedia PDF Downloads 68
15031 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS

Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon

Abstract:

In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.

Keywords: energy storage system (ESS), open framework, profile, photovoltaic (PV), uninterruptible power supply (UPS)

Procedia PDF Downloads 467
15030 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 86
15029 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems

Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers

Abstract:

Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.

Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages

Procedia PDF Downloads 88
15028 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: battery, electric vehicles, ultra-capacitor, model predictive control

Procedia PDF Downloads 255
15027 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 141
15026 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials

Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan

Abstract:

Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.

Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography

Procedia PDF Downloads 101
15025 Sustaining the Mitochondrial Transcription Factor A in Sperm

Authors: Betty Anson

Abstract:

Researchers have found that mature sperm cells are not only devoid of mature MTDNA (mitochondrial DNA) but also lack a particular protein essential for DNA maintenance, known as mitochondrial transcription factor A, or TFAM (transcription factor A mitochondria). As a result, children get the DNA of certain important body functions only from their mothers. More experiments show that TFAM appears to burn out when it is used as a source of energy for sperm movement. This study investigates alternative sources of energy for sperm movement that could sustain the existence of TFAM.

Keywords: mItochondria, DNA, TFAM, sperm

Procedia PDF Downloads 66
15024 Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network

Authors: Tzu-Yang Lin, Chuan-Ching Sue

Abstract:

Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA.

Keywords: Passive Optical Networks, PONs, Optical Network Unit, ONU, energy efficiency, delay constraint

Procedia PDF Downloads 277
15023 Energy Savings with the Use of LED Lights at the Wastewater Treatment Plant

Authors: Kishen Prathivadi

Abstract:

The Sewer Authority Mid-Coastside (SAM) is a Joint Powers Authority formed in 1976 and provides secondary wastewater treatment to an average flow of 2.0 million gallons per day. SAM owns and operates a Wastewater Treatment Plant (WWTP) and a sanitary sewage collection system that collects sewage from its three member agencies: the City of Half Moon Bay, the Granada Community Services District and Montara Water and Sanitary District. The Sewer Authority Mid-Coastside (SAM) partnered with Pacific Gas & Electric, and its contractor GEL America, to review and replace all inefficient lighting fixtures and bulbs at the SAM treatment plant and administrative office. The project focused on replacing old and inefficient lighting fixtures and bulbs, reducing annual operating and maintenance costs, and reducing SAM’s carbon footprint. The project resulted in a 55% overall energy reduction, higher light quality and acuity, and a total operational savings of $495,000 over ten years.

Keywords: energy savings, LED, lighting, electrical

Procedia PDF Downloads 134
15022 Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements

Authors: Aulon Shabani, Denis Panxhi, Orion Zavalani

Abstract:

This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption.

Keywords: electrical appliances, energy management, modelling, peak estimation, simulation, smart home

Procedia PDF Downloads 154
15021 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 400
15020 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control

Authors: Ruben Lopez-Rodriguez

Abstract:

In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.

Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control

Procedia PDF Downloads 41
15019 Analysis of Process Methane Hydrate Formation That Include the Important Role of Deep-Sea Sediments with Analogy in Kerek Formation, Sub-Basin Kendeng, Central Java, Indonesia

Authors: Yan Bachtiar Muslih, Hangga Wijaya, Trio Fani, Putri Agustin

Abstract:

Demand of Energy in Indonesia always increases 5-6% a year, but production of conventional energy always decreases 3-5% a year, it means that conventional energy in 20-40 years ahead will not able to complete all energy demand in Indonesia, one of the solve way is using unconventional energy that is gas hydrate, gas hydrate is gas that form by biogenic process, gas hydrate stable in condition with extremely depth and low temperature, gas hydrate can form in two condition that is in pole condition and in deep-sea condition, wherein this research will focus in gas hydrate that association with methane form methane hydrate in deep-sea condition and usually form in depth between 150-2000 m, this research will focus in process of methane hydrate formation that is biogenic process and the important role of deep-sea sediment so can produce accumulation of methane hydrate, methane hydrate usually will be accumulated in find sediment in deep-sea environment with condition high-pressure and low-temperature this condition too usually make methane hydrate change into white nodule, methodology of this research is geology field work and laboratory analysis, from geology field work will get sample data consist of 10-15 samples from Kerek Formation outcrops as random for imagine the condition of deep-sea environment that influence the methane hydrate formation and also from geology field work will get data of measuring stratigraphy in outcrops Kerek Formation too from this data will help to imagine the process in deep-sea sediment like energy flow, supply sediment, and etc, and laboratory analysis is activity to analyze all data that get from geology field work, the result of this research can used to exploration activity of methane hydrate in another prospect deep-sea environment in Indonesia.

Keywords: methane hydrate, deep-sea sediment, kerek formation, sub-basin of kendeng, central java, Indonesia

Procedia PDF Downloads 459
15018 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 45
15017 The Effects of COVID-19 on the Energy Trends and Production Capacity of Turkish Cement Industry

Authors: Adem Atmaca

Abstract:

More than 500 million COVID-19 cases were noted in February 2022 in Turkey. The country is one of the most impacted countries all around the world with twenty million cases. The cement industry in Turkey ranks among the most energy-intensive sectors with huge production capacities among the biggest exporter countries. The purpose of this paper is to clarify the effects of the pandemic on the cement industry in Turkey by showing the changes in manufacturing capacities and export rates of all facilities in the country. The investigation has revealed that the epidemic has slight effects on the factory production capacities and export rates. Even though the capacity usage rates of the factories decreased dramatically in 2019, it seems that Turkish cement companies turned the pandemic to their advantage by increasing their production capacities, capacity usage rates and export rates gradually by reaching new markets during the pandemic.

Keywords: energy, emissions, cement industry, COVID-19

Procedia PDF Downloads 118