Search results for: social learning
11886 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 11011885 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet
Authors: Neneng Hayatul Milah
Abstract:
The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.Keywords: reading comprehension skills, CIRC, Padlet, narrative text
Procedia PDF Downloads 4211884 Instructional Coaches' Perceptions of Professional Development: An Exploration of the School-Based Support Program
Authors: Youmen Chaaban, Abdallah Abu-Tineh
Abstract:
This article examines the development of a professional development (PD) model for educator growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge, and skills of both school leadership and teachers in an attempt to improve students’ learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents the results of a qualitative study examining the perceptions of nineteen instructional coaches about the strengths of the PD program, the challenges they face in their day-to-day implementation of the program, and their suggestions for the betterment of the program’s implementation and outcomes. Data were collected from the instructional coaches through open-ended surveys followed by focus group interviews. The instructional coaches reported several strengths, which were compatible with the literature on effective PD. However, the challenges they faced were deeply rooted within the structure of the program, in addition to external factors operating at the school and Ministry of Education levels. Thus, a general consensus on the way the program should ultimately develop was reached.Keywords: situated professional development, school reform, instructional coach, school based support program
Procedia PDF Downloads 36111883 The Impact of Social Media Exposure on COVID- 19 Vaccine Hesitancy “A Comparative Study on the Public in Egypt and the United Arab Emirates”
Authors: Lamiaa Shehata
Abstract:
The current (COVID-19) pandemic is one of the international crises, and a lot of efforts have been directed toward the improvement of efficient vaccines, however vaccine hesitancy is one of the universal menaces that make the fulfillment of society immunity very hard. The World Health Organization acknowledges vaccine hesitancy as the society’s maximum risk to people's health protection, especially in little and moderate-revenue nations. Social media is strong in observing audience behaviors and evaluating the circulation, which would supply useful data for strategy makers. It has a significant function in spreading facts during the pandemic, it could assist to boost protective manners. The objective of this study is to determine the effects of social media exposure on vaccine hesitancy. Data were collected using a survey in a form of a structured questionnaire conducted during December 2021- January 2022 using convenient sampling techniques (680) in Egypt and the United Arab Emirates. The results revealed that there was a significant relationship between the high exposure to social media and the refusal of the Covid19 vaccine also, the percentage of the refusal of the vaccine is higher in Egypt, however, UAE forced people to take the vaccine. Furthermore, public attitudes toward COVID-19 vaccination vary from gender and region. In conclusion, policymakers must adjust their policies through the use of social media to immediate actions to vaccine-related news to support vaccination approval.Keywords: COVID-19, hesitancy, social media, vaccine
Procedia PDF Downloads 14711882 Digital Storytelling in the ELL Classroom: A Literature Review
Authors: Nicholas Jobe
Abstract:
English Language Learners (ELLs) often struggle in a classroom setting, too embarrassed at their skill level to write or speak in front of peers and too lacking in confidence to practice. Storytelling is an age-old method of teaching that allows learners to remember important details while listening or sharing a narrative. In the modern world, digital storytelling through the use of technological tools such as podcasts and videos allow students to safely interact with each other to build skills in a fun and engaging way that also works as a confidence booster. Specifically using a constructionist approach to learning, digital storytelling allows ELL students to grow and build new and prior knowledge by creating stories via these technological means. Research herein suggests, through the use of case studies and mixed methodologies, that digital storytelling mainly yields positive results for effective learning in an ELL classroom setting.Keywords: digital storytelling, ELL, narrative, podcast
Procedia PDF Downloads 14211881 Teacher’s Self-Efficacy and Self-Perception of Teaching Professional Competences
Authors: V. Biasi, A. M. Ciraci, G. Domenici, N. Patrizi
Abstract:
We present two studies centered on the teacher’s perception of self-efficacy and professional competences. The first study aims to evaluate the levels of self-efficacy as attitude in 200 teachers of primary and secondary schools. Teacher self-efficacy is related to many educational outcomes: such as teachers’ persistence, enthusiasm, commitment and instructional behavior. High level of teacher self-efficacy beliefs enhance student motivation and pupil’s learning level. On this theoretical and empirical basis we are planning a second study oriented to assess teacher self-perception of competences that are linked to teacher self-efficacy. With the CDVR Questionnaire, 287 teachers graduated in Education Sciences in e-learning mode, showed an increase in their self-perception of didactic-evaluation and relational competences and an increased confidence also in their own professionalism.Keywords: teacher competence, teacher self-efficacy, selfperception, self-report evaluation
Procedia PDF Downloads 52511880 Early Childhood Education in a Depressed Economy in Nigeria: Implication in the Classroom
Authors: Ogunnaiya Racheal Taiwo
Abstract:
Children's formative years are crucial to their growth; it is, therefore, necessary for all the stakeholders to ensure that the pupils have an enabling quality of life which is essential for realizing their potential. For children to live and grow, they need a secure home, nutritious food, good health care, and quality education. This paper, therefore, investigates the implications of a depressed economy on the classroom learning of Nigerian children as it is clear that Nigeria is currently experiencing the worst economic depression in several decades, which affects a substantial proportion of children. The study is qualitative research, and it adopts a phenomenological approach where the experiences of respondents are examined qualitatively. Three senatorial districts in Oyo State were considered, and 50 teachers, both male, and female were chosen from each senatorial district for an interview through conversational key informants' interviews. The interviewees were recorded, transcribed, and presented using thematic analysis. Findings showed that more children have dropped out since the beginning of the year than in previous years. It was also recorded that learning has become challenging as children now find it harder to acquire learning materials. It was recommended that the government should reimburse early childhood schools to lessen the effect of the inability to purchase materials and pay school fees. It was also recommended that an intervention be made to approach and resolve issues associated with out-of-school children.Keywords: childhood, classroom, education, depressed economy, poverty
Procedia PDF Downloads 11111879 Making Social Accountability Initiatives Work in the Performance of Local Self-Governing Institutions: District-Level Analysis in Rural Assam, India
Authors: Pankaj Kumar Kalita
Abstract:
Ineffectiveness of formal institutional mechanisms such as official audit to improve public service delivery has been a serious concern to scholars working on governance reforms in developing countries. Scholars argue that public service delivery in local self-governing institutions can be improved through application of informal mechanisms such as social accountability. Social accountability has been reinforced with the engagement of citizens and civic organizations in the process of service delivery to reduce the governance gap in developing countries. However, there are challenges that may impede the scope of establishing social accountability initiatives in the performance of local self-governing institutions. This study makes an attempt to investigate the factors that may impede the scope of establishing social accountability, particularly in culturally heterogeneous societies like India. While analyzing the implementation of two rural development schemes by Panchayats, the local self-governing institutions functioning in rural Assam in India, this study argues that the scope of establishing social accountability in the performance of local self-governing institutions, particularly in culturally heterogeneous societies in developing countries will be impeded by the absence of inter-caste and inter-religion networks. Data has been collected from five selected districts of Assam using in-depth interview method and survey method. The study further contributes to the debates on 'good governance' and citizen-centric approaches in developing countries.Keywords: citizen engagement, local self-governing institutions, networks, social accountability
Procedia PDF Downloads 32311878 Forward Conditional Restricted Boltzmann Machines for the Generation of Music
Authors: Johan Loeckx, Joeri Bultheel
Abstract:
Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)
Procedia PDF Downloads 52711877 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers
Authors: Rakesh Bhatia
Abstract:
Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.Keywords: baudhayan numbers, anurupyena, vilokanam, sutras
Procedia PDF Downloads 1711876 Factors Impeding Learners’ Use of the Blackboard System in Kingdom of Saudi Arabia
Authors: Omran Alharbi, Victor Lally
Abstract:
In recent decades, a number of educational institutions around the world have come to depend on technology such as the Blackboard system to improve their educational environment. On the other hand, there are many factors that delay the usage of this technology, especially in developing nations such as Saudi Arabia. The goal of this study was to investigate learner’s views of the use of Blackboard in one Saudi university in order to gain a comprehensive view of the factors that delay the implementation of technology in Saudi institutions. This study utilizes a qualitative approach, with data being collected through semi-structured interviews. Six participants from different disciplines took part in this study. The findings indicated that there are two levels of factors that affect students’ use of the Blackboard system. These are factors at the institutional level, such as lack of technical support and lack of training support, which lead to insufficient training related to the Blackboard system. The second level of factors is at the individual level, for example, a lack of teacher motivation and encouragement. In addition, students do not have sufficient levels of skills or knowledge related to how to use the Blackboard in their learning. Conclusion: learners confronted and faced two main types of factors (at the institution level and individual level) that delayed and impeded their learning. Institutions in KSA should take steps and implement strategies to remove or reduce these factors in order to allow students to benefit from the latest technology in their learning.Keywords: blackboard, factors, KSA, learners
Procedia PDF Downloads 22111875 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages
Authors: Adithya Jaikumar, Sudarsan Jayasingh
Abstract:
The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media
Procedia PDF Downloads 32611874 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 15411873 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 20811872 Corporate Social Responsibility Practices and Financial Performance: The Case of French Unlisted SMEs
Authors: Zineb Abidi, Marc-Arthur Diaye
Abstract:
There exists a large empirical literature concerning the relationship between corporate social responsibility (CSR) and corporate financial performance. This literature, however, applies mainly to large corporations and/or listed firms. To the best of our knowledge, the question of whether meeting CSR requirements impacts the financial performance of small and medium-sized unlisted SMEs has not so far been analyzed. This paper aims to analyze, for the first time, the effect of CSR on the financial performance of SMEs. Using an original database including 5,257 French SMEs, we show that adopting CSR practices has a positive but weak effect on a firm’s financial performance. To develop this further, we analyzed CSR practices interactions assessing the best combination of CSR components that positively influence SME financial performance. Our results show that French SMEs benefit more from their pro-social behavior when they choose a combination of CSR components best adapted to their individual characteristics.Keywords: corporate social responsibility, financial performance, unlisted firms, SMEs
Procedia PDF Downloads 17511871 Evidence of the Effect of the Structure of Social Representations on Group Identification
Authors: Eric Bonetto, Anthony Piermatteo, Fabien Girandola, Gregory Lo Monaco
Abstract:
The present contribution focuses on the effect of the structure of social representations on group identification. A social representation (SR) is defined as an organized and structured set of cognitions, produced and shared by members of a same group about a same social object. Within this framework, the central core theory establishes a structural distinction between central cognitions – or 'core' – and peripheral ones: the former are theoretically considered as more connected than the later to group members’ social identity and may play a greater role in SRs’ ability to allow group identification by means of a common vision of the object of representation. Indeed, the central core provides a reference point for the in-group as it constitutes a consensual vision that gives meaning to a social object particularly important to individuals and to the group. However, while numerous contributions clearly refer to the underlying role of SRs in group identification, there are only few empirical evidences of this aspect. Thus, we hypothesize an effect of the structure of SRs on group identification. More precisely, central cognitions (vs. peripheral ones) will lead to a stronger group identification. In addition, we hypothesize that the refutation of a cognition will lead to a stronger group identification than its activation. The SR mobilized here is that of 'studying' among a population of first-year undergraduate psychology students. Thus, a pretest (N = 82), using an Attribute-Challenge Technique, was designed in order to identify the central and the peripheral cognitions to use in the primings of our main study. The results of this pretest are in line with previous studies. Then, the main study (online; N = 184), using a social priming methodology, was based on a 2 (Structural status of the cognitions belonging to the prime: central vs. peripheral) x 2 (Type of prime: activation vs. refutation) experimental design in order to test our hypotheses. Results revealed, as expected, the main effect of the structure of the SR on group identification. Indeed, central cognitions trigger a higher level of identification than the peripheral ones. However, we observe neither effect of the type of prime, nor interaction effect. These results experimentally demonstrate for the first time the effect of the structure of SRs on group identification and indicate that central cognitions are more connected than peripheral ones to group members’ social identity. These results will be discussed considering the importance of understanding identity as a function of SRs and on their ability to potentially solve the lack of consideration of the definition of the group in Social Representations Theory.Keywords: group identification, social identity, social representations, structural approach
Procedia PDF Downloads 19611870 The Effect of Intimate Partner Violence on Child Abuse in South Korea: Focused on the Moderating Effects of Patriarchal Attitude and Informal Social Control
Authors: Hye Lin Yang, Clifton R. Emery
Abstract:
Purpose: The purpose of this study is to examine the effects of intimate partner violence on child abuse, whether patriarchal attitude and informal social control moderate the relationship between intimate partner violence and child abuse. This study was conducted with data from The Seoul Families and Neighborhoods Study (SFNS). The SFNS is a representative random probability 3-stage cluster sample of 541 cohabiting couples in Seoul, South Korea collected in 2012. To verify research models, Random effect analysis were used. All analyses were performed using the Stata program. Results: Crucial findings are the following. First, intimate partner violence showed a significantly positive relationship with Child abuse. Second, there are significant moderating effects of informal social control on intimate partner violence - child abuse. Third, there are significant moderating effects of patriarchal attitude on intimate partner violence - child abuse. In other words, Patriarchal attitude is a significant risk factor of child abuse and informal social control is a significant Protection factor of child abuse. Based on results, the policy and practical implications for preventing child abuse, promoting informal social control were discussed.Keywords: Intimate partner violence, child abuse, informal social control, patriarchal attitude
Procedia PDF Downloads 30711869 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 19111868 Science Process Skill and Interest Preschooler in Learning Early Science through Mobile Application
Authors: Seah Siok Peh, Hashimah Mohd Yunus, Nor Hashimah Hashim, Mariam Mohamad
Abstract:
A country needs a workforce that encompasses knowledge, skilled labourers to generate innovation, productivity and being able to solve problems creatively via technology. Science education experts believe that the mastery of science skills help preschoolers to generate such knowledge on scientific concepts by providing constructive experiences. Science process skills are skills used by scientists to study or investigate a problem, issue, problem or phenomenon of science. In line with the skills used by scientists. The purpose of this study is to investigate the basic science process skill and interest in learning early science through mobile application. This study aimed to explore six spesific basic science process skills by the use of a mobile application as a learning support tool. The descriptive design also discusses on the extent of the use of mobile application in improving basic science process skill in young children. This study consists of six preschoolers and two preschool teachers from two different classes located in Perak, Malaysia. Techniques of data collection are inclusive of observations, interviews and document analysis. This study will be useful to provide information and give real phenomena to policy makers especially Ministry of education in Malaysia.Keywords: science education, basic science process skill, interest, early science, mobile application
Procedia PDF Downloads 24711867 The Social Conflicts and Evaluation of Times Square, Middletown Manhattan District in Development Since the Inceptive Point
Authors: Seung Oh, Satoshi Okada
Abstract:
This study is information-intensive research that provides insight from the factual history, social perception, and robust ideas derived from the social conflict in the most progressively thriving district in the world, Times Square. The case study provides the socio-environmental setup since the Inceptive Point of the development, the Great Depression, the history archives, and evaluation based on the master-level journals as standard. The Great Depression invited macro-sized changes, including financial systems, to raise fluidity by gutting off the debt limit by the gold value, organizing the labor, and social problems in the major cities. The locality of Times Square was implemented by the socio-political changes, overturning ownerships of properties, including theaters, delocalizing tourism, and re-entering the labors with organizations through infrastructure projects and civil activities for minorities and preservations amid the progressive developments over time. Naturally, chasing the media for factual research before and after Inceptive Points. Times Square is understood not just the ‘tower with subway’ progression but also social conflicts raised for adjustment for civil rights, preservations, and progression to deliver the environmental background to trigger the 42nd Street Development (42DP) in the 1990s.Keywords: development, district, progressive, preservation, social conflict, value chasing
Procedia PDF Downloads 7611866 Pracademia in Irish Higher Education: The Only Solution to Contemporary Regulation in Professional Social Care Practice
Authors: Aoife Prendergast
Abstract:
The synergy between theory and practice can be considered elusive, the touchstone for the development of successful undergraduate programmes particularly in allied health professions such as social care. A 'pracademic' is a person who spans both the somewhat ethereal world of academia as a scholar and the pragmatic world of practice. This paper examines the concept of 'pracademia' in relation to the role of the social care practitioner and continuing professional development. It also assists in the understanding of the synergy between social care professionals and higher education. A consideration of the identity and position in terms of approach to regulation is explored as well as an acknowledgement of the strengths and opportunities for sharing power in hierarchical positions. The world of practice serves as the centre point of the academic compass for most professional programs. Just as schools of engineering and law are disciplined by the marketplace, which seeks well-trained students, so our social care programmes must perennially find ways to address the fast changing needs of practitioners, whether they be government, not-for-profit organizations, consulting firms or contractors. We may not expect such traditional academic disciplines as history, sociology, or political science to cater to the needs of external audiences or practitioners— indeed, these disciplines' insulation from public concerns and issues is considered a strength by some. This paper aims to explore the integration of academic teaching and research with the communities of practice in social care. This appears to be a fundamental aspiration of the social care profession. While building and integrating an important body of academic theory and concepts from a variety of disciplines, social care as a field has embraced a professional orientation by seeking to be relevant to practitioners at various levels. While teaching theory, social care programmes, and faculty are often acutely aware that their academic content and credibility, in part, rest on a deep connection with practitioners. While theory can be self-contained, the impact of our research and teaching arguably finds its most compelling and highest audience when it addresses the agenda items and concerns of practitioners.Keywords: social care, pracademia, supervision, practice education
Procedia PDF Downloads 16611865 Ethnic Relations in Social Work Education: A Study of Teachers’ Strategies and Experiences in Sweden
Authors: Helene Jacobson Pettersson, Linda Lill
Abstract:
Research that combines educational science, social work and migration studies shows that ethnic relations tend to be represented from various angles and with different content. As studied here, it is found in steering documents, literature, and teaching that the construction of ethnic relations related to social work varies in education over time. The study has its actuality in changed preconditions to social work education caused by the demographic development and the on-going globalization in the Swedish society. In this presentation we will explore strategies and experiences of teaching ethnic relations at social work educations in Sweden. The purpose is to investigate the strategies that are used and what content is given to ethnic relations in the social work education. University teachers are interviewed concerning their interpretation of steering documents related to the content and how they transform this in their teaching. Even though there has been a tradition to include aspects as intercultural relations and ethnicity, the norms of the welfare state has continued to be the basis for how to conceptualize people’s way of living and social problems. Additionally, the contemporary migration situation with a large number of refugees coming to Sweden peaking in 2015, dramatically changes the conditions for social work as a practice field. Increasing economic and social tensions in Sweden, becomes a challenge for the universities to support the students to achieve theoretical and critical knowledge and skills needed to work for social change, human rights and equality in the ethnic diverse Swedish society. The study raises questions about how teachers interpret the goals of the social work programs in terms of ethnic relations. How do they transform this into teaching? How are ethnic relations in social work described and problematized in lectures, cases and examinations? The empirical material is based on interviews with teachers involved in the social work education at four Swedish universities. The interviewees were key persons in the sense that they could influence the course content, and they were drawn from different semesters of the program. In depth interviews are made on the themes; personal entrance, description and understanding of ethnic relations in social work, teachers’ conception of students understanding of ethnic relations, and the content, form and strategies for teaching used by the teachers. The analysis is thematic and inspired from narrative analysis. The results show that the subject is relatively invisible in steering documents. The interviewees have experienced changes in the teaching over time, with less focus on intercultural relations and specific cultural competence. Instead ethnic relations are treated more contextually and interacting with categories as gender, class and age. The need of theoretical and critical knowledge of migration and ethnic relations in a broad sense but also for specific professional use is emphasized.Keywords: ethnic relations, social work education, social change, human rights, equality, ethnic diversity in Sweden
Procedia PDF Downloads 28411864 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity
Authors: Wang, Kuei-Ing, Jou-Fan Shih
Abstract:
This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity
Procedia PDF Downloads 51211863 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 11011862 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach
Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato
Abstract:
In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system
Procedia PDF Downloads 32811861 Identifying the Effects of the COVID-19 Pandemic on Syrian and Congolese Refugees’ Health and Economic Access in Central Pennsylvania
Authors: Mariam Shalaby, Kayla Krause, Raisha Ismail, Daniel George
Abstract:
Introduction: The Pennsylvania State College of Medicine Refugee Initiative is a student-run organization that works with eleven Syrian and Congolese refugee families. Since 2016, it has used grant funding to make weekly produce purchases at a local market, provide tutoring services, and develop trusting relationships. This case study explains how the Refugee Initiative shifted focus to face new challenges due to the COVID-19 pandemic in 2020. Methodology: When refugees who had previously attained stability found themselves unable to pay the bills, the organization shifted focus from food security to direct assistance such as applying for unemployment compensation since many had recently lost jobs. When refugee families additionally struggled to access hygiene supplies, funding was redirected to purchase them. Funds were also raised from the community to provide financial relief from unpaid rent and bills. Findings: Systemic challenges were encountered in navigating federal/state unemployment and social welfare systems, and there was a conspicuous absence of affordable, language-accessible assistance that could help refugees. Finally, as struggling public schools failed to maintain adequate English as a Second Language (ESL) education, the group’s tutoring services were hindered by social distancing and inconsistent access to distance-learning platforms. Conclusion: Ultimately, the pandemic highlighted that a charity-based arrangement is helpful but not sustainable, and challenges persist for refugee families. Based on the Refugee Initiative's experiences over the past year of the COVID-19 pandemic, several needs must be addressed to aid refugee families at this time, including: increased access to affordable and language-accessible social services, educational resources, and simpler options for grant-based financial assistance. Interventions to increase these resources will aid refugee families in need in Central Pennsylvania and internationallyKeywords: COVID-19, health, pandemic, refugees
Procedia PDF Downloads 13611860 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 25511859 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 20911858 Comprehensive Review of Adversarial Machine Learning in PDF Malware
Authors: Preston Nabors, Nasseh Tabrizi
Abstract:
Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion
Procedia PDF Downloads 4411857 Constructing Notation for Music Learning in Athletes: Identifying Key Concepts in Music and Body Movements
Authors: Fung Chiat Loo, Fung Ying Loo
Abstract:
This paper discusses, suggests, and constructs a notation system to facilitate the learning and understanding of the two aspects of music and movement in a sports routine. This model serves to provide a simple and logical notation that does not require training in both music and choreography. Notation is an important medium in many art forms, particularly in music and dance, transmitting information that cannot easily be expressed using words or language. Another field that is closely associated with dance and music is sports routine, which equally requires choreography and music. However, from the perspective of music, it is common to observe many incongruencies appearing between the music used and the choreography that impede an optimal perception of the performance. The concept of the notation proceeds with a discussion and review of existing dance notations that could contribute to sports routines, along with rules and a code of points in selected sports routines. The author's involvement as an insider of numerous musical theatre productions also contributed to this study. The notation constructed includes time (tempo), significances of musical accents, direction, and phrasing, along with significances of movements (jump, punch, shape). It is believed that the level of congruence between music and movement will provide optimal visualization, and in that, the notation serves to provide adequate information on both entities for the understanding of athletes and coaches.Keywords: notation, choreography, music learning, sports routines, congruence
Procedia PDF Downloads 90