Search results for: real time control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28763

Search results for: real time control

25013 Comparative Analysis of the Impact of Urbanization on Land Surface Temperature in the United Arab Emirates

Authors: A. O. Abulibdeh

Abstract:

The aim of this study is to investigate and compare the changes in the Land Surface Temperature (LST) as a function of urbanization, particularly land use/land cover changes, in three cities in the UAE, mainly Abu Dhabi, Dubai, and Al Ain. The scale of this assessment will be at the macro- and micro-levels. At the macro-level, a comparative assessment will take place to compare between the four cities in the UAE. At the micro-level, the study will compare between the effects of different land use/land cover on the LST. This will provide a clear and quantitative city-specific information related to the relationship between urbanization and local spatial intra-urban LST variation in three cities in the UAE. The main objectives of this study are 1) to investigate the development of LST on the macro- and micro-level between and in three cities in the UAE over two decades time period, 2) to examine the impact of different types of land use/land cover on the spatial distribution of LST. Because these three cities are facing harsh arid climate, it is hypothesized that (1) urbanization is affecting and connected to the spatial changes in LST; (2) different land use/land cover have different impact on the LST; and (3) changes in spatial configuration of land use and vegetation concentration over time would control urban microclimate on a city scale and control macroclimate on the country scale. This study will be carried out over a 20-year period (1996-2016) and throughout the whole year. The study will compare between two distinct periods with different thermal characteristics which are the cool/cold period from November to March and warm/hot period between April and October. The best practice research method for this topic is to use remote sensing data to target different aspects of natural and anthropogenic systems impacts. The project will follow classical remote sensing and mapping techniques to investigate the impact of urbanization, mainly changes in land use/land cover, on LST. The investigation in this study will be performed in two stages. Stage one remote sensing data will be used to investigate the impact of urbanization on LST on a macroclimate level where the LST and Urban Heat Island (UHI) will be compared in the three cities using data from the past two decades. Stage two will investigate the impact on microclimate scale by investigating the LST and UHI using a particular land use/land cover type. In both stages, an LST and urban land cover maps will be generated over the study area. The outcome of this study should represent an important contribution to recent urban climate studies, particularly in the UAE. Based on the aim and objectives of this study, the expected outcomes are as follow: i) to determine the increase or decrease of LST as a result of urbanization in these four cities, ii) to determine the effect of different land uses/land covers on increasing or decreasing the LST.

Keywords: land use/land cover, global warming, land surface temperature, remote sensing

Procedia PDF Downloads 252
25012 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study

Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla

Abstract:

As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.

Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry

Procedia PDF Downloads 231
25011 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 211
25010 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant

Procedia PDF Downloads 474
25009 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks

Authors: Emin Avcı, Çiydem Çatak

Abstract:

The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.

Keywords: banking, economic cycles, leverage, procyclicality

Procedia PDF Downloads 267
25008 Design and Manufacture Detection System for Patient's Unwanted Movements during Radiology and CT Scan

Authors: Anita Yaghobi, Homayoun Ebrahimian

Abstract:

One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine.

Keywords: CT scan, radiology, X Ray, unwanted movement

Procedia PDF Downloads 462
25007 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow

Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi

Abstract:

Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.

Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation

Procedia PDF Downloads 158
25006 A Novel Method for Face Detection

Authors: H. Abas Nejad, A. R. Teymoori

Abstract:

Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.

Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model

Procedia PDF Downloads 343
25005 Asymmetric of the Segregation-Enhanced Brazil Nut Effect

Authors: Panupat Chaiworn, Soraya lama

Abstract:

We study the motion of particles in cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to free surface of the bed particles and find that the rising time as a function of intruder density increases to a maximum and then decreases monotonically. The result is qualitatively accord to the previous findings in experiments using relative humidity of the bed particles and found speed convection of the bed particles containers it moving slowly, and the rising time of the intruder where a minimal instead of maximal rising time in the small density region was found. Our experimental results suggest that the topology of the container plays an important role in the Brazil nut effect.

Keywords: granular particles, Brazil nut effect, cylinder container, vertical vibration, convection

Procedia PDF Downloads 532
25004 Study on Water Level Management Criteria of Reservoir Failure Alert System

Authors: B. Lee, B. H. Choi

Abstract:

The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)

Keywords: alert system, management criteria, reservoir failure, sensor

Procedia PDF Downloads 201
25003 Use of Cobalt Graphene in Place of Platnium in Catalytic Converter

Authors: V. Srinivasan, S. M. Sriram Nandan

Abstract:

Today in the modern world the most important problem faced by the mankind is increasing the pollution in a very high rate. It affects the ecosystem of the environment and also aids to increase the greenhouse effect. The exhaust gases from the automobile is the major cause of a pollution. Automobiles have increased to a large number which has increased the pollution of our world to an alarming rate. There are two methods of controlling the pollution namely, pre-pollution control method and post-pollution control method. This paper is based on controlling the emission by post-pollution control method. The ratio of surface area of nanoparticles to the volume of the nanoparticles is inversely proportional to the radius of the nanoparticles. So decreasing the radius, this ratio is leading resulting in an increased rate of reaction and thus the concentration of the pollution is decreased. To achieve this objective, use of cobalt-graphene element is proposed. The proposed method is mainly to decrease the cost of platinum as it is expensive. This has a longer life than the platinum-based catalysts.

Keywords: automobile emissions, catalytic converter, cobalt-graphene, replacement of platinum

Procedia PDF Downloads 392
25002 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 119
25001 Minimizing Students' Learning Difficulties in Mathematics

Authors: Hari Sharan Pandit

Abstract:

Mathematics teaching in Nepal has been centralized and guided by the notion of transfer of knowledge and skills from teachers to students. The overemphasis on the ‘algorithm-centric’ approach to mathematics teaching and the focus on ‘role–learning’ as the ultimate way of solving mathematical problems since the early years of schooling have been creating severe problems in school-level mathematics in Nepal. In this context, the author argues that students should learn real-world mathematical problems through various interesting, creative and collaborative, as well as artistic and alternative ways of knowing. The collaboration-incorporated pedagogy is a distinct pedagogical approach that offers a better alternative as an integrated and interdisciplinary approach to learning that encourages students to think more broadly and critically about real-world problems. The paper, as a summarized report of action research designed, developed and implemented by the author, focuses on the needs and usefulness of collaboration-incorporated pedagogy in the Nepali context to make mathematics teaching more meaningful for producing creative and critical citizens. This paper is useful for mathematics teachers, teacher educators and researchers who argue on arts integration in mathematics teaching.

Keywords: peer teaching, metacognitive approach, mitigating, action research

Procedia PDF Downloads 29
25000 Determinants of House Dust, Endotoxin, and β- (1→ 3)-D-Glucan in Homes of Turkish Children

Authors: Afsoun Nikravan, Parisa Babaei, Gulen Gullu

Abstract:

We aimed to study the association between house dust endotoxin, β-(1→3)-D-glucan, and asthma in a sample representative of the Turkish population. We analyzed data from 240 participants. The house dust was collected from the homes of 110 asthmatics and 130 control (without asthma) school-aged children (6-11 years old). House dust from the living room and from bedroom floors were analyzed for endotoxin and beta-glucan contents. House dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β-(1→3)-D-glucan by the inhibition enzyme immunoassay. The parents answered questions regarding potential determinants. We found geometric means 187.5 mg/m² for dust. According to statistical values, the endotoxin geometric mean was 13.86×103 EU/g for the control group and 6.16×103 EU/g for the asthma group. As a result, the amount of bacterial endotoxin was measured at a higher level in the homes of children without asthma. The geometric mean for beta-glucan was 46.52 µg/g and 44.39 µg/g for asthma and control groups, respectively. No associations between asthma and microbial agents were observed in Turkish children. High correlations (r > 0.75) were found between floor dust and endotoxin loads, while endotoxin and β-(1→3)-D-glucan concentrations were not correlated. The type of flooring (hard-surface or textile) was the strongest determinant for loads of floor dust and concentrations of endotoxin. Water damage and dampness at home were determinants of β-(1→3)-D-glucan concentrations. Endotoxin and β-(1→3)-D-glucan concentrations in Turkish house dust might lower than concentrations seen in other European countries.

Keywords: indoor air quality, asthma, microbial pollutants, case-control

Procedia PDF Downloads 128
24999 An Agent-Based Approach to Examine Interactions of Firms for Investment Revival

Authors: Ichiro Takahashi

Abstract:

One conundrum that macroeconomic theory faces is to explain how an economy can revive from depression, in which the aggregate demand has fallen substantially below its productive capacity. This paper examines an autonomous stabilizing mechanism using an agent-based Wicksell-Keynes macroeconomic model. This paper focuses on the effects of the number of firms and the length of the gestation period for investment that are often assumed to be one in a mainstream macroeconomic model. The simulations found the virtual economy was highly unstable, or more precisely, collapsing when these parameters are fixed at one. This finding may even suggest us to question the legitimacy of these common assumptions. A perpetual decline in capital stock will eventually encourage investment if the capital stock is short-lived because an inactive investment will result in insufficient productive capacity. However, for an economy characterized by a roundabout production method, a gradual decline in productive capacity may not be able to fall below the aggregate demand that is also shrinking. Naturally, one would then ask if our economy cannot rely on an external stimulus such as population growth and technological progress to revive investment, what factors would provide such a buoyancy for stimulating investments? The current paper attempts to answer this question by employing the artificial macroeconomic model mentioned above. The baseline model has the following three features: (1) the multi-period gestation for investment, (2) a large number of heterogeneous firms, (3) demand-constrained firms. The instability is a consequence of the following dynamic interactions. (a) A multiple-period gestation period means that once a firm starts a new investment, it continues to invest over some subsequent periods. During these gestation periods, the excess demand created by the investing firm will spill over to ignite new investment of other firms that are supplying investment goods: the presence of multi-period gestation for investment provides a field for investment interactions. Conversely, the excess demand for investment goods tends to fade away before it develops into a full-fledged boom if the gestation period of investment is short. (b) A strong demand in the goods market tends to raise the price level, thereby lowering real wages. This reduction of real wages creates two opposing effects on the aggregate demand through the following two channels: (1) a reduction in the real labor income, and (2) an increase in the labor demand due to the principle of equality between the marginal labor productivity and real wage (referred as the Walrasian labor demand). If there is only a single firm, a lower real wage will increase its Walrasian labor demand, thereby an actual labor demand tends to be determined by the derived labor demand. Thus, the second positive effect would not work effectively. In contrast, for an economy with a large number of firms, Walrasian firms will increase employment. This interaction among heterogeneous firms is a key for stability. A single firm cannot expect the benefit of such an increased aggregate demand from other firms.

Keywords: agent-based macroeconomic model, business cycle, demand constraint, gestation period, representative agent model, stability

Procedia PDF Downloads 163
24998 Agegraphic Dark Energy with GUP

Authors: H. R. Fazlollahi

Abstract:

Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model.

Keywords: generalized uncertainty principle, karolyhazy approach, agegraphic dark energy, cosmology

Procedia PDF Downloads 76
24997 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.

Keywords: blockchain, digital multi-utility, end use, demand forecasting

Procedia PDF Downloads 174
24996 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation

Procedia PDF Downloads 154
24995 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis

Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare

Abstract:

The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.

Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test

Procedia PDF Downloads 404
24994 Enhancing Code Security with AI-Powered Vulnerability Detection

Authors: Zzibu Mark Brian

Abstract:

As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.

Keywords: AI, machine language, cord security, machine leaning

Procedia PDF Downloads 41
24993 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization

Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson

Abstract:

The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.

Keywords: attenuation, infrared, multiphase, spectroscopy

Procedia PDF Downloads 370
24992 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 112
24991 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 98
24990 Fundamental Study on the Growth Mechanism of MoS₂ Quantum Dots: Impact of Reaction Time and Precursor Concentration

Authors: Geetika Sahu, Chanchal Chakraborty, Subhadeep Roy, Souri Banerjee

Abstract:

We aim to investigate the growth mechanism of molybdenum disulfide quantum dots (MoS₂ QDs) under hydrothermal reaction conditions by exploring two important parameters that control the growth process – (i) reaction time and (ii) precursor concentration. This fundamental study will focus on tuning the particle size, which eventually alters the optical and electronic properties of the QDs due to the quantum confinement effect, as well as monitoring the spatial growth of quantum dot sheets prepared through the aggregation of individual quantum dots. Among the mentioned two parameters, the former dictates the duration of aggregation while the latter controls the aggregation rate. The hydrothermally synthesized QDs have been analyzed through morphological and optical tools, and we used fractal analysis to understand the growth process. With increasing reaction time T (at a constant precursor concentration ≈ 73mM), the growth process shows a crossover from a bottom-up to a top-down process at T= 14 hours. A non-monotonic behavior of average QD size ( d ) is observed on the other side of it ( d=7nm at T= 7 hours; d=16nm at T=14 hours; d=2nm at T=30 hours), which is supported by morphological studies like TEM and STEM, as well as optical studies like UV visible and PL spectra. Higher (lower) QD sizes correspond to lower (higher) bandgap and significant redshift (blueshift) in the PL spectra. The fractal dimension ( f) of the QD clusters shows a sudden drop from 1.92 at this particular time T=14 to 1.82 and saturates at this value afterward. This signifies the onset of the fragmentation of the clusters due to the unavailability of active precursors. To validate the role of the precursors that have been claimed, we have carried out photophysical and statistical studies at a constant reaction time (14 hours ) and have varied the precursor concentration instead. We observe a similar non-monotonic behavior in QD size (maximum size at ≈ 73mM) supported by the morphological and optical studies as the precursor concentration varies from 22mM ( d=10nm) to 125mM (d=7nm ). This is in agreement with fractal analysis, where the maximum df of 1.97 is observed at 73 mM which decreases at both higher ( df = 1.67 at 125mM ) and lower concentration ( df = 1.75 at 22mM). This impact of precursor concentration is consistent for all reaction times. The fractal dimension of the QD sheets formed during the seeding and growth process is replicated for different reaction times as well as precursor concentration values through numerical simulations of random walk process on a 2D square lattice.

Keywords: aggregation and fragmentation, fractal analysis, optical studies, random walk

Procedia PDF Downloads 13
24989 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 518
24988 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition

Procedia PDF Downloads 560
24987 Multi Object Tracking for Predictive Collision Avoidance

Authors: Bruk Gebregziabher

Abstract:

The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.

Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors

Procedia PDF Downloads 86
24986 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines

Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin

Abstract:

Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.

Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.

Procedia PDF Downloads 99
24985 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies

Authors: Yalda Zarnegarnia, Shari Messinger

Abstract:

Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.

Keywords: biomarker, correlation, familial paired design, ROC curve

Procedia PDF Downloads 241
24984 Preventing the Septic Shock in an Oncological Patient with Febrile Neutropenia Submitted to Chemotherapy: The Nurse's Responsibility

Authors: Hugo Reis, Isabel Rabiais

Abstract:

The main purpose of the present study is to understand the nurse’s responsibility in preventing the septic shock in an oncological patient with febrile neutropenia submitted to chemotherapy. In order to do it, an integrative review of literature has been conducted. In the research done in many databases, it was concluded that only 7 out of 5202 articles compiled the entire inclusion standard present in the strict protocol of research, being this made up by all different methodologies. On the research done in the 7 articles it has resulted 8 text macro-units associated to different nursing interventions: ‘Health Education’; ‘Prophylactic Therapy Administration’; ‘Scales Utilization’; ‘Patient Evaluation’; ‘Environment Control’; ‘Performance of Diagnostic Auxiliary Exams’; ‘Protocol Enforcement/Procedure Guidelines’; ‘Antibiotic Therapy Administration’. Concerning the prevalence/result’s division there can be identified many conclusions: the macro-units ‘Patient Evaluation’, ‘Performance of Diagnostic Auxiliary Exams’, and ‘Antibiotic Therapy Administration’ present themselves to be the most prevalent in the research – 6 in 7 occurrences (approximately 85.7%). Next, the macro-unit ‘Protocol Enforcement/Procedure Guidelines’ presents itself as an important expression unit – being part of 5 out of the 7 analyzed studies (approximately 71.4%). The macro-unit ‘Health Education’, seems to be in the same way, an important expression unit – 4 out of the 7 (or approximately 57%). The macro-unit ‘Scales Utilization’, represents a minor part in the research done – it’s in only 2 out of the 7 cases (approximately 28.6%). On the other hand, the macro-units ‘Prophylactic Therapy Administration’ and ‘Environment Control’ are the two categories with fewer results in the research - 1 out of the 7 cases, the same as approximately 14.3% of the research results. Every research done to the macro-unit ‘Antibiotic Therapy Administration’ agreed to refer that the intervention should be strictly done, in a period of time less than one hour after diagnosing the fever, with the purpose of controlling the quick spread of infection – minimizing its seriousness. Identifying these interventions contributes, concluding that, to adopt strategies in order to prevent the phenomenon that represents a daily scenario responsible for the cost´s increase in health institutions, being at the same time responsible for the high morbidity rates and mortality increase associated with this specific group of patients.

Keywords: febrile neutropenia, oncology nursing, patient, septic shock

Procedia PDF Downloads 218