Search results for: optimum signal approximation
122 Modeling Atmospheric Correction for Global Navigation Satellite System Signal to Improve Urban Cadastre 3D Positional Accuracy Case of: TANA and ADIS IGS Stations
Authors: Asmamaw Yehun
Abstract:
The name “TANA” is one of International Geodetic Service (IGS) Global Positioning System (GPS) station which is found in Bahir Dar University in Institute of Land Administration. The station name taken from one of big Lakes in Africa ,Lake Tana. The Institute of Land Administration (ILA) is part of Bahir Dar University, located in the capital of the Amhara National Regional State, Bahir Dar. The institute is the first of its kind in East Africa. The station is installed by cooperation of ILA and Sweden International Development Agency (SIDA) fund support. The Continues Operating Reference Station (CORS) is a network of stations that provide global satellite system navigation data to help three dimensional positioning, meteorology, space, weather, and geophysical applications throughout the globe. TANA station was as CORS since 2013 and sites are independently owned and operated by governments, research and education facilities and others. The data collected by the reference station is downloadable through Internet for post processing purpose by interested parties who carry out GNSS measurements and want to achieve a higher accuracy. We made a first observation on TANA, monitor stations on May 29th 2013. We used Leica 1200 receivers and AX1202GG antennas and made observations from 11:30 until 15:20 for about 3h 50minutes. Processing of data was done in an automatic post processing service CSRS-PPP by Natural Resources Canada (NRCan) . Post processing was done June 27th 2013 so precise ephemeris was used 30 days after observation. We found Latitude (ITRF08): 11 34 08.6573 (dms) / 0.008 (m), Longitude (ITRF08): 37 19 44.7811 (dms) / 0.018 (m) and Ellipsoidal Height (ITRF08): 1850.958 (m) / 0.037 (m). We were compared this result with GAMIT/GLOBK processed data and it was very closed and accurate. TANA station is one of the second IGS station for Ethiopia since 2015 up to now. It provides data for any civilian users, researchers, governmental and nongovernmental users. TANA station is installed with very advanced choke ring antenna and GR25 Leica receiver and also the site is very good for satellite accessibility. In order to test hydrostatic and wet zenith delay for positional data quality, we used GAMIT/GLOBK and we found that TANA station is the most accurate IGS station in East Africa. Due to lower tropospheric zenith and ionospheric delay, TANA and ADIS IGS stations has 2 and 1.9 meters 3D positional accuracy respectively.Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour
Procedia PDF Downloads 69121 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles
Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica
Abstract:
Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation
Procedia PDF Downloads 301120 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100119 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications
Authors: S. Trafela, X. Xua, K. Zuzek Rozmana
Abstract:
In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation
Procedia PDF Downloads 161118 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model
Authors: T. Thein, S. Kalyar Myo
Abstract:
Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)
Procedia PDF Downloads 286117 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 72116 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 116115 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors
Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl
Abstract:
An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids
Procedia PDF Downloads 130114 Flood Early Warning and Management System
Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare
Abstract:
The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.Keywords: flood, modeling, HPC, FOSS
Procedia PDF Downloads 89113 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 435112 Signature Bridge Design for the Port of Montreal
Authors: Juan Manuel Macia
Abstract:
The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability
Procedia PDF Downloads 68111 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems
Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele
Abstract:
The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab
Procedia PDF Downloads 183110 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements
Authors: Zakia Fatima, Liu Lu, Donghao Li
Abstract:
The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.Keywords: metabolite analysis, sustainability, carbon fibers, urine.
Procedia PDF Downloads 27109 Impaired Transient Receptor Potential Vanilloid 4-Mediated Dilation of Mesenteric Arteries in Spontaneously Hypertensive Rats
Authors: Ammar Boudaka, Maryam Al-Suleimani, Hajar BaOmar, Intisar Al-Lawati, Fahad Zadjali
Abstract:
Background: Hypertension is increasingly becoming a matter of medical and public health importance. The maintenance of normal blood pressure requires a balance between cardiac output and total peripheral resistance. The endothelium, through the release of vasodilating factors, plays an important role in the control of total peripheral resistance and hence blood pressure homeostasis. Transient Receptor Potential Vanilloid type 4 (TRPV4) is a mechanosensitive non-selective cation channel that is expressed on the endothelium and contributes to endothelium-mediated vasodilation. So far, no data are available about the morphological and functional status of this channel in hypertensive cases. Objectives: This study aimed to investigate whether there is any difference in the morphological and functional features of TRPV4 in the mesenteric artery of normotensive and hypertensive rats. Methods: Functional feature of TRPV4 in four experimental animal groups: young and adult Wistar-Kyoto rats (WKY-Y and WKY-A), young and adult spontaneously hypertensive rats (SHR-Y and SHR-A), was studied by adding 5 µM 4αPDD (TRPV4 agonist) to mesenteric arteries mounted in a four-chamber wire myograph and pre-contracted with 4 µM phenylephrine. The 4αPDD-induced response was investigated in the presence and absence of 1 µM HC067047 (TRPV4 antagonist), 100 µM L-NAME (nitric oxide synthase inhibitor), and endothelium. The morphological distribution of TRPV4 in the wall of rat mesenteric arteries was investigated by immunostaining. Real-time PCR was used in order to investigate mRNA expression level of TRPV4 in the mesenteric arteries of the four groups. The collected data were expressed as mean ± S.E.M. with n equal to the number of animals used (one vessel was taken from each rat). To determine the level of significance, statistical comparisons were performed using the student’s t-test and considered to be significantly different at p<0.05. Results: 4αPDD induced a relaxation response in the mesenteric arterial preparations (WKY-Y: 85.98% ± 4.18; n = 5) that was markedly inhibited by HC067047 (18.30% ± 2.86; n= 5; p<0.05), endothelium removal (19.93% ± 1.50; n = 5; p<0.05) and L-NAME (28.18% ± 3.09; n = 5; p<0.05). The 4αPDD-induced relaxation was significantly lower in SHR-Y compared to WKY-Y (SHR-Y: 70.96% ± 3.65; n = 6, WKY-Y: 85.98% ± 4.18; n = 5-6, p<0.05. Moreover, the 4αPDD-induced response was significantly lower in WKY-A than WKY-Y (WKY-A: 75.58 ± 1.30; n = 5, WKY-Y: 85.98% ± 4.18; n = 5, p<0.05). Immunostaining study showed immunofluorescent signal confined to the endothelial layer of the mesenteric arteries. The expression of TRPV4 mRNA in SHR-Y was significantly lower than in WKY-Y (SHR-Y; 0.67RU ± 0.34; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Furthermore, TRPV4 mRNA expression in WKY-A was lower than its expression in WKY-Y (WKY-A: 0.62RU ± 0.37; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Conclusion: Stimulation of TRPV4, which is expressed on the endothelium of rat mesenteric artery, triggers an endothelium-mediated relaxation response that markedly decreases with hypertension and growing up changes due to downregulation of TRPV4 expression.Keywords: hypertension, endothelium, mesenteric artery, TRPV4
Procedia PDF Downloads 313108 Challenges for Reconstruction: A Case Study from 2015 Gorkha, Nepal Earthquake
Authors: Hari K. Adhikari, Keshab Sharma, K. C. Apil
Abstract:
The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 hit the central region of Nepal on April 25, 2015; with the epicenter about 77 km northwest of Kathmandu Valley. This paper aims to explore challenges of reconstruction in the rural earthquake-stricken areas of Nepal. The Gorkha earthquake on April 25, 2015, has significantly affected the livelihood of people and overall economy in Nepal, causing severe damage and destruction in central Nepal including nation’s capital. A larger part of the earthquake affected area is difficult to access with rugged terrain and scattered settlements, which posed unique challenges and efforts on a massive scale reconstruction and rehabilitation. 800 thousand buildings were affected leaving 8 million people homeless. Challenge of reconstruction of optimum 800 thousand houses is arduous for Nepal in the background of its turmoil political scenario and weak governance. With significant actors involved in the reconstruction process, no appreciable relief has reached to the ground, which is reflected over the frustration of affected people. The 2015 Gorkha earthquake is one of most devastating disasters in the modern history of Nepal. Best of our knowledge, there is no comprehensive study on reconstruction after disasters in modern Nepal, which integrates the necessary information to deal with challenges and opportunities of reconstructions. The study was conducted using qualitative content analysis method. Thirty engineers and ten social mobilizes working for reconstruction and more than hundreds local social workers, local party leaders, and earthquake victims were selected arbitrarily. Information was collected through semi-structured interviews and open-ended questions, focus group discussions, and field notes, with no previous assumption. Author also reviewed literature and document reviews covering academic and practitioner studies on challenges of reconstruction after earthquake in developing countries such as 2001 Gujarat earthquake, 2005 Kashmir earthquake, 2003 Bam earthquake and 2010 Haiti earthquake; which have very similar building typologies, economic, political, geographical, and geological conditions with Nepal. Secondary data was collected from reports, action plans, and reflection papers of governmental entities, non-governmental organizations, private sector businesses, and the online news. This study concludes that inaccessibility, absence of local government, weak governance, weak infrastructures, lack of preparedness, knowledge gap and manpower shortage, etc. are the key challenges of the reconstruction after 2015 earthquake in Nepal. After scrutinizing different challenges and issues, study counsels that good governance, integrated information, addressing technical issues, public participation along with short term and long term strategies to tackle with technical issues are some crucial factors for timely and quality reconstruction in context of Nepal. Sample collected for this study is relatively small sample size and may not be fully representative of the stakeholders involved in reconstruction. However, the key findings of this study are ones that need to be recognized by academics, governments, and implementation agencies, and considered in the implementation of post-disaster reconstruction program in developing countries.Keywords: Gorkha earthquake, reconstruction, challenges, policy
Procedia PDF Downloads 408107 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre
Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason
Abstract:
Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion
Procedia PDF Downloads 255106 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning
Authors: Ioanna Taouki, Marie Lallier, David Soto
Abstract:
Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition
Procedia PDF Downloads 150105 A Multi-Perspective, Qualitative Study into Quality of Life for Elderly People Living at Home and the Challenges for Professional Services in the Netherlands
Authors: Hennie Boeije, Renate Verkaik, Joke Korevaar
Abstract:
In Dutch national policy, it is promoted that the elderly remain living at home longer. They are less often admitted to a nursing home or only later in life. While living at home, it is important that they experience a good quality of life. Care providers in primary care support this. In this study, it was investigated what quality of life means for the elderly and which characteristics care should have that supports living at home longer with quality of life. To explore this topic, a qualitative methodology was used. Four focus groups were conducted: two with elderly people who live at home and their family caregivers, one with district nurses employed in-home care services and one with elderly care physicians working in primary care. Next to this individual interviews were employed with general practitioners (GPs). In total 32 participants took part in the study. The data were thematically analysed with MaxQDA software for qualitative analysis and reported. Quality of life is a multi-faceted term for elderly. The essence of their description is that they can still undertake activities that matter to them. Good physical health, mental well-being and social connections enable them to do this. Own control over their life is important for some. They are of opinion that how they experience life and manage old age is related to their resilience and coping. Key terms in the definitions of quality of life by GPs are also physical and mental health and social contacts. These are the three pillars. Next, to this elderly care, physicians mention security and safety and district nurses add control over their own life and meaningful daily activities. They agree that with frail elderly people, the balance is delicate and a change in one of the three pillars can cause it to collapse like a house of cards. When discussing what support is needed, professionals agree on access to care with a low threshold, prevention, and life course planning. When care is provided in a timely manner, a worsening of the situation can be prevented. They agree that hospital care often is not needed since most of the problems with the elderly have to do with care and security rather than with a cure per se. GPs can consult elderly care physicians to lower their workload and to bring in specific knowledge. District nurses often signal changes in the situation of the elderly. According to them, the elderly predominantly need someone to watch over them and provide them with a feeling of security. Life course planning and advance care planning can contribute to uniform treatment in line with older adults’ wishes. In conclusion, all stakeholders, including elderly persons, agree on what entails quality of life and the quality of care that is needed to support that. A future challenge is to shape conditions for the right skill mix of professionals, cooperation between the professions and breaking down differences in financing and supply. For the elderly, the challenge is preparing for aging.Keywords: elderly living at home, quality of life, quality of care, professional cooperation, life course planning, advance care planning
Procedia PDF Downloads 128104 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs
Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon
Abstract:
The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs
Procedia PDF Downloads 118103 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 161102 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method
Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao
Abstract:
In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.Keywords: defect levels, nanorods, photoluminescence, Raman modes
Procedia PDF Downloads 241101 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings
Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey
Abstract:
Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing
Procedia PDF Downloads 152100 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip
Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri
Abstract:
We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP
Procedia PDF Downloads 13399 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks
Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner
Abstract:
Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.Keywords: USB, device, cyber security, attack, detection
Procedia PDF Downloads 39798 Aerosol Characterization in a Coastal Urban Area in Rimini, Italy
Authors: Dimitri Bacco, Arianna Trentini, Fabiana Scotto, Flavio Rovere, Daniele Foscoli, Cinzia Para, Paolo Veronesi, Silvia Sandrini, Claudia Zigola, Michela Comandini, Marilena Montalti, Marco Zamagni, Vanes Poluzzi
Abstract:
The Po Valley, in the north of Italy, is one of the most polluted areas in Europe. The air quality of the area is linked not only to anthropic activities but also to its geographical characteristics and stagnant weather conditions with frequent inversions, especially in the cold season. Even the coastal areas present high values of particulate matter (PM10 and PM2.5) because the area closed between the Adriatic Sea and the Apennines does not favor the dispersion of air pollutants. The aim of the present work was to identify the main sources of particulate matter in Rimini, a tourist city in northern Italy. Two sampling campaigns were carried out in 2018, one in winter (60 days) and one in summer (30 days), in 4 sites: an urban background, a city hotspot, a suburban background, and a rural background. The samples are characterized by the concentration of the ionic composition of the particulates and of the main a hydro-sugars, in particular levoglucosan, a marker of the biomass burning, because one of the most important anthropogenic sources in the area, both in the winter and surprisingly even in the summer, is the biomass burning. Furthermore, three sampling points were chosen in order to maximize the contribution of a specific biomass source: a point in a residential area (domestic cooking and domestic heating), a point in the agricultural area (weed fires), and a point in the tourist area (restaurant cooking). In these sites, the analyzes were enriched with the quantification of the carbonaceous component (organic and elemental carbon) and with measurement of the particle number concentration and aerosol size distribution (6 - 600 nm). The results showed a very significant impact of the combustion of biomass due to domestic heating in the winter period, even though many intense peaks were found attributable to episodic wood fires. In the summer season, however, an appreciable signal was measured linked to the combustion of biomass, although much less intense than in winter, attributable to domestic cooking activities. Further interesting results were the verification of the total absence of sea salt's contribution in the particulate with the lower diameter (PM2.5), and while in the PM10, the contribution becomes appreciable only in particular wind conditions (high wind from north, north-east). Finally, it is interesting to note that in a small town, like Rimini, in summer, the traffic source seems to be even more relevant than that measured in a much larger city (Bologna) due to tourism.Keywords: aerosol, biomass burning, seacoast, urban area
Procedia PDF Downloads 12897 Variation of Lexical Choice and Changing Need of Identity Expression
Authors: Thapasya J., Rajesh Kumar
Abstract:
Language plays complex roles in society. The previous studies on language and society explain their interconnected, complementary and complex interactions and, those studies were primarily focused on the variations in the language. Variation being the fundamental nature of languages, the question of personal and social identity navigated through language variation and established that there is an interconnection between language variation and identity. This paper analyses the sociolinguistic variation in language at the lexical level and how the lexical choice of the speaker(s) affects in shaping their identity. It obtains primary data from the lexicon of the Mappila dialect of Malayalam spoken by the members of Mappila (Muslim) community of Kerala. The variation in the lexical choice is analysed by collecting data from the speech samples of 15 minutes from four different age groups of Mappila dialect speakers. Various contexts were analysed and the frequency of borrowed words in each instance is calculated to reach a conclusion on how the variation is happening in the speech community. The paper shows how the lexical choice of the speakers could be socially motivated and involve in shaping and changing identities. Lexical items or vocabulary clearly signal the group identity and personal identity. Mappila dialect of Malayalam was rich in frequent use of borrowed words from Arabic, Persian and Urdu. There was a deliberate attempt to show their identity as a Mappila community member, which was derived from the socio-political situation during those days. This made a clear variation between the Mappila dialect and other dialects of Malayalam at the surface level, which was motivated to create and establish the identity of a person as the member of Mappila community. Historically, these kinds of linguistic variation were highly motivated because of the socio-political factors and, intertwined with the historical facts about the origin and spread of Islamism in the region; people from the Mappila community highly motivated to project their identity as a Mappila because of the social insecurities they had to face before accepting that religion. Thus the deliberate inclusion of Arabic, Persian and Urdu words in their speech helped in showing their identity. However, the socio-political situations and factors at the origin of Mappila community have been changed over a period of time. The social motivation for indicating their identity as a Mappila no longer exist and thus the frequency of borrowed words from Arabic, Persian and Urdu have been reduced from their speech. Apart from the religious terms, the borrowed words from these languages are very few at present. The analysis is carried out by the changes in the language of the people according to their age and found to have significant variations between generations and literacy plays a major role in this variation process. The need of projecting a specific identity of an individual would vary according to the change in the socio-political scenario and a variation in language can shape the identity in order to go with the varying socio-political situation in any language.Keywords: borrowings, dialect, identity, lexical choice, literacy, variation
Procedia PDF Downloads 23796 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix
Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti
Abstract:
When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS
Procedia PDF Downloads 29995 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements
Authors: Denis A. Sokolov, Andrey V. Mazurkevich
Abstract:
In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement
Procedia PDF Downloads 5994 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder
Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi
Abstract:
With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor
Procedia PDF Downloads 15493 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency
Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade
Abstract:
Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency
Procedia PDF Downloads 304