Search results for: memory optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4399

Search results for: memory optimization

649 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 428
648 Comparison of Growth Medium Efficiency into Stevia (Stevia rebaudiana Bertoni) Shoot Biomass and Stevioside Content in Thin-Layer System, TIS RITA® Bioreactor, and Bubble Column Bioreactor

Authors: Nurhayati Br Tarigan, Rizkita Rachmi Esyanti

Abstract:

Stevia (Stevia rebaudiana Bertoni) has a great potential to be used as a natural sweetener because it contains steviol glycoside, which is approximately 100 - 300 times sweeter than sucrose, yet low calories. Vegetative and generative propagation of S. rebaudiana is inefficient to produce stevia biomass and stevioside. One of alternative for stevia propagation is in vitro shoot culture. This research was conducted to optimize the best medium for shoot growth and to compare the bioconversion efficiency and stevioside production of S. rebaudiana shoot culture cultivated in thin layer culture (TLC), recipient for automated temporary immersion system (TIS RITA®) bioreactor, and bubble column bioreactor. The result showed that 1 ppm of Kinetin produced a healthy shoot and the highest number of leaves compared to BAP. Shoots were then cultivated in TLC, TIS RITA® bioreactor, and bubble column bioreactor. Growth medium efficiency was determined by yield and productivity. TLC produced the highest growth medium efficiency of S. rebaudiana, the yield was 0.471 ± 0.117 gbiomass.gsubstrate-1, and the productivity was 0.599 ± 0.122 gbiomass.Lmedium-1.day-1. While TIS RITA® bioreactor produced the lowest yield and productivity, 0.182 ± 0.024 gbiomass.gsubstrate-1 and 0.041 ± 0.0002 gbiomass.Lmedium-1.day-1 respectively. The yield of bubble column bioreactor was 0.354 ± 0.204 gbiomass.gsubstrate-1 and the productivity was 0,099 ± 0,009 gbiomass.Lmedium-1.day-1. The stevioside content from the highest to the lowest was obtained from stevia shoot which was cultivated on TLC, TIS RITA® bioreactor, and bubble column bioreactor; the content was 93,44 μg/g, 42,57 μg/g, and 23,03 μg/g respectively. All three systems could be used to produce stevia shoot biomass, but optimization on the number of nutrition and oxygen intake was required in each system.

Keywords: bubble column, growth medium efficiency, Stevia rebaudiana, stevioside, TIS RITA®, TLC

Procedia PDF Downloads 274
647 A Wearable Device to Overcome Post–Stroke Learned Non-Use; The Rehabilitation Gaming System for wearables: Methodology, Design and Usability

Authors: Javier De La Torre Costa, Belen Rubio Ballester, Martina Maier, Paul F. M. J. Verschure

Abstract:

After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system that is composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution as well as implicitly reducing the expected cost associated with the use of the paretic limb, following the notion of the reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer–based measure of arm use, and its capacity to discriminate different activities that require increasing movement of the arm. We also show how the system can act as a personalized assistant by providing specific goals and adjusting them depending on the performance of the patients. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond the hospitalization time.

Keywords: stroke, wearables, learned non use, hemiparesis, ADLs

Procedia PDF Downloads 222
646 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon

Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum

Abstract:

The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.

Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis

Procedia PDF Downloads 128
645 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 161
644 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave

Procedia PDF Downloads 352
643 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning

Authors: John Zanetich

Abstract:

Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.

Keywords: tacit knowledge, knowledge management, college programs, experiential learning

Procedia PDF Downloads 267
642 Project Production Control (PPC) Implementation for an Offshore Facilities Construction Project

Authors: Muhammad Hakim Bin Mat Tasir, Erwan Shahfizad Hasidan, Hamidah Makmor Bakry, M. Hafiz B. Izhar

Abstract:

Every key performance indicator used to monitor a project’s construction progress emphasizes trade productivity or specific commodity run-down curves. Examples include the productivity of welding by the number of joints completed per day, quantity of NDT (Non-Destructive Tests) inspection per day, etc. This perspective is based on progress and productivity; however, it does not enable a system perspective of how we produce. This paper uses a project production system perspective by which projects are a collection of production systems comprising the interconnected network of processes and operations that represent all the work activities to execute a project from start to finish. Furthermore, it also uses the 5 Levels of production system optimization as a frame. The goal of the paper is to describe the application of Project Production Control (PPC) to control and improve the performance of several production processes associated with the fabrication and assembly of a Central Processing Platform (CPP) Jacket, part of an offshore mega project. More specifically, the fabrication and assembly of buoyancy tanks as they were identified as part of the critical path and required the highest demand for capacity. In total, seven buoyancy tanks were built, with a total estimated weight of 2,200 metric tons. These huge buoyancy tanks were designed to be reversed launching and self-upending of the jacket, easily retractable, and reusable for the next project, ensuring sustainability. Results showed that an effective application of PPC not only positively impacted construction progress and productivity but also exposed sources of detrimental variability as the focus of continuous improvement practices. This approach augmented conventional project management practices, and the results had a high impact on construction scheduling, planning, and control.

Keywords: offshore, construction, project management, sustainability

Procedia PDF Downloads 64
641 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 322
640 A Critical Analysis of the Current Concept of Healthy Eating and Its Impact on Food Traditions

Authors: Carolina Gheller Miguens

Abstract:

Feeding is, and should be, pleasurable for living beings so they desire to nourish themselves while preserving the continuity of the species. Social rites usually revolve around the table and are closely linked to the cultural traditions of each region and social group. Since the beginning, food has been closely linked with the products each region provides, and, also, related to the respective seasons of production. With the globalization and facilities of modern life we are able to find an ever increasing variety of products at any time of the year on supermarket shelves. These lifestyle changes end up directly influencing food traditions. With the era of uncontrolled obesity caused by the dazzle with the large and varied supply of low-priced to ultra-processed industrial products now in the past, today we are living a time when people are putting aside the pleasure of eating to exclusively eat food dictated by the media as healthy. Recently the medicalization of food in our society has become so present in daily life that almost without realizing we make food choices conditioned to the studies of the properties of these foods. The fact that people are more attentive to their health is interesting. However, when this care becomes an obsessive disorder, which imposes itself on the pleasure of eating and extinguishes traditional customs, it becomes dangerous for our recognition as citizens belonging to a culture and society. This new way of living generates a rupture with the social environment of origin, possibly exposing old traditions to oblivion after two or three generations. Based on these facts, the presented study analyzes these social transformations that occur in our society that triggered the current medicalization of food. In order to clarify what is actually a healthy diet, this research proposes a critical analysis on the subject aiming to understand nutritional rationality and relate how it acts in the medicalization of food. A wide bibliographic review on the subject was carried out followed by an exploratory research in online (especially social) media, a relevant source in this context due to the perceived influence of such media in contemporary eating habits. Finally, this data was crossed, critically analyzing the current situation of the concept of healthy eating and medicalization of food. Throughout this research, it was noticed that people are increasingly seeking information about the nutritional properties of food, but instead of seeking the benefits of products that traditionally eat in their social environment, they incorporate external elements that often bring benefits similar to the food already consumed. This is because the access to information is directed by the media and exalts the exotic, since this arouses more interest of the population in general. Efforts must be made to clarify that traditional products are also healthy foods, rich in history, memory and tradition and cannot be replaced by a standardized diet little concerned with the construction of taste and pleasure, having a relationship with food as if it were a Medicinal product.

Keywords: food traditions, food transformations, healthy eating, medicalization of food

Procedia PDF Downloads 335
639 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 495
638 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective

Authors: Jing-Ma

Abstract:

Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.

Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach

Procedia PDF Downloads 29
637 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 329
636 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 230
635 The Burmese Exodus of 1942: Towards Evolving Policy Protocols for a Refugee Archive

Authors: Vinod Balakrishnan, Chrisalice Ela Joseph

Abstract:

The Burmese Exodus of 1942, which left more than 4 lakh as refugees and thousands dead, is one of the worst forced migrations in recorded history. Adding to the woes of the refugees is the lack of credible documentation of their lived experiences, trauma, and stories and their erasure from recorded history. Media reports, national records, and mainstream narratives that have registered the exodus provide sanitized versions which have reduced the refugees to a nameless, faceless mass of travelers and obliterated their lived experiences, trauma, and sufferings. This attitudinal problem compels the need to stem the insensitivity that accompanies institutional memory by making a case for a more humanistically evolved policy that puts in place protocols for the way the humanities would voice the concern for the refugee. A definite step in this direction and a far more relevant project in our times is the need to build a comprehensive refugee archive that can be a repository of the refugee experiences and perspectives. The paper draws on Hannah Arendt’s position on the Jewish refugee crisis, Agamben’s work on statelessness and citizenship, Foucault’s notion of governmentality and biopolitics, Edward Said’s concepts on Exile, Fanon’s work on the dispossessed, Derrida’s work on ‘the foreigner and hospitality’ in order to conceptualize the refugee condition which will form the theoretical framework for the paper. It also refers to the existing scholarship in the field of refugee studies such as Roger Zetter’s work on the ‘refugee label’, Philip Marfleet’s work on ‘refugees and history’, Lisa Malkki’s research on the anthropological discourse of the refugee and refugee studies. The paper is also informed by the work that has been done by the international organizations to address the refugee crisis. The emphasis is on building a strong argument for the establishment of the refugee archive that finds but a passing and a none too convincing reference in refugee studies in order to enable a multi-dimensional understanding of the refugee crisis. Some of the old questions cannot be dismissed as outdated as the continuing travails of the refugees in different parts of the world only remind us that they are still, largely, unanswered. The questions are -What is the nature of a Refugee Archive? How is it different from the existing historical and political archives? What are the implications of the refugee archive? What is its contribution to refugee studies? The paper draws on Diana Taylor’s concept of the archive and the repertoire to theorize the refugee archive as a repository that has the documentary function of the ‘archive’ and the ‘agency’ function of the repertoire. It then reads Ayya’s Accounts- a memoir by Anand Pandian -in the light of Hannah Arendt’s concepts of the ‘refugee as vanguard’ and ‘story telling as political action’- to illustrate how the memoir contributes to the refugee archive that provides the refugee a place and agency in history. The paper argues for a refugee archive that has implications for the formulation of inclusive refugee policies.

Keywords: Ayya’s Accounts, Burmese Exodus, policy protocol, refugee archive

Procedia PDF Downloads 144
634 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 423
633 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 138
632 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 92
631 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 229
630 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 350
629 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 156
628 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology

Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum

Abstract:

According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.

Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics

Procedia PDF Downloads 331
627 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 154
626 Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas

Authors: Mateusz Szul, Tomasz Iluk, Aleksander Sobolewski

Abstract:

Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification.

Keywords: ash fusibility, gasification, piston engine, sewage sludge

Procedia PDF Downloads 200
625 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 274
624 Chronolgy and Developments in Inventory Control Best Practices for FMCG Sector

Authors: Roopa Singh, Anurag Singh, Ajay

Abstract:

Agriculture contributes a major share in the national economy of India. A major portion of Indian economy (about 70%) depends upon agriculture as it forms the main source of income. About 43% of India’s geographical area is used for agricultural activity which involves 65-75% of total population of India. The given work deals with the Fast moving Consumer Goods (FMCG) industries and their inventories which use agricultural produce as their raw material or input for their final product. Since the beginning of inventory practices, many developments took place which can be categorised into three phases, based on the review of various works. The first phase is related with development and utilization of Economic Order Quantity (EOQ) model and methods for optimizing costs and profits. Second phase deals with inventory optimization method, with the purpose of balancing capital investment constraints and service level goals. The third and recent phase has merged inventory control with electrical control theory. Maintenance of inventory is considered negative, as a large amount of capital is blocked especially in mechanical and electrical industries. But the case is different in food processing and agro-based industries and their inventories due to cyclic variation in the cost of raw materials of such industries which is the reason for selection of these industries in the mentioned work. The application of electrical control theory in inventory control makes the decision-making highly instantaneous for FMCG industries without loss in their proposed profits, which happened earlier during first and second phases, mainly due to late implementation of decision. The work also replaces various inventories and work-in-progress (WIP) related errors with their monetary values, so that the decision-making is fully target-oriented.

Keywords: control theory, inventory control, manufacturing sector, EOQ, feedback, FMCG sector

Procedia PDF Downloads 358
623 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 43
622 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 732
621 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 66
620 Fear of Falling and Subjective Cognitive Decline Are Predictors of Fall Risk in Community-dwelling Older Adults Living in Low-income Settings

Authors: Ladda Thiamwong, Renata Komalasari

Abstract:

Falls are the leading cause of disability and hospitalization in low-income older adults. Fear of falling is present in 20% to 85 % of older adults and has been identified as an independent risk factor of fall risk, activity restriction, and loss of independence. About 12% of American older adults have subjective cognitive decline. Cognitive impairment is also an established factor of fall risk. However, it is unclear whether measures of fear of falling and subjective cognitive decline have the greatest association with fall risk in low-income older adults. The aim of this study was to evaluate the association between fear of falling, subjective cognitive decline-functional performance (SCD-FP), and fall risk using simple screening tools. In this cross-section study, we collected data from community-dwelling older adults 60 years or older in low-income settings in Central Florida, and 86 participants were included in the data analysis. Fear of falling was assessed by the Short Fall Efficacy Scale- International (Short FES-I) with seven items. Subjective cognitive decline-functional performance (SCD-FP) was assessed by a self-reported experience of worsening or more frequent confusion or memory loss in the past 12 months and its functional implications. Fall risk was evaluated by the Centers for Disease Control and Prevention (CDC)'s Stay Independent checklist with 12 items. The majority of participants were female, and more than half of the participants were African American. More than half of the participants had a higher school degree or higher, and less than 20% had no financial problems. Less than 30% of the participants perceived their general health as very good- excellent. More than half of the participants lived alone, and less than 15% lived with a partner or spouse. About 60% of the participants had hypertension, 40% had diabetes, 16% had cancer, and 50% had arthritis. About 30% of the participants had difficulty walking up ten steps without resting, more than 40% felt unsteady when walking, and 30% had been advised to use a cane or walker to get around safely. Regression analysis showed that fall risk was associated with fear of falling ( = .524, p <.001) and subjective cognitive decline-functional performance ( = .465, p =.027). The structure coefficient showed that fear of falling (rs2 = .922) was a stronger predictor of fall risk than subjective cognitive decline-functional performance (rs2= .200). Fear of falling and subjective cognitive decline-functional performance are growing public health issues, and addressing those issues is a public priority. Proactive screening for fear of falling and subjective cognitive decline-functional performance is critical in fall prevention. A combination of all three self-reported tools (Short FES-I, SCD-FP, and CDC's Stay Independent checklist) takes less than 5 minutes to complete. Primary care providers or public health professionals should consider including these tools to screen fear of falling and subjective cognitive decline-functional performance as part of fall risk assessment, especially in low-income settings. Thus, encouraging older adults and healthcare professionals to discuss fear of falling, subjective cognitive decline, and fall risk during routine medical office visits.

Keywords: falls, fall risk, fear of falling, cognition, subjective cognitive decline, low-income, older adults, community, screening, nursing, primary care

Procedia PDF Downloads 86