Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6134

Search results for: measurement accuracy

2384 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: air tunnel, ground heat exchanger, raft foundation, residential building

Procedia PDF Downloads 332
2383 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 188
2382 Development of a Symbiotic Milk Chocolate Using Inulin and Bifidobacterium Lactis

Authors: Guity Karim, Valiollah Ayareh

Abstract:

Probiotic dairy products are those that contain biologically active components that may affect beneficially one or more target functions in the body, beyond their adequate nutritional effects. As far as chocolate milk is a popular dairy product in the country especially among children and youth, production of a symbiotic (probiotic + peribiotic) new product using chocolate milk, Bifidobacterium lactis (DSM, Netherland) and inulin (Bene, Belgium) would help to promote the nutritional and functional properties of this product. Bifidobacterium Lactis is used as a probiotic in a variety of foods, particularly dairy products like yogurt and as a probiotic bacterium has benefit effects on the human health. Inulin as a peribiotic agent is considered as functional food ingredient. Experimental studies have shown its use as bifidogenic agent. Chocolate milk with different percent of fat (1 and 2 percent), 6 % of sugar and 0.9 % cacao was made, sterilized (UHT) and supplemented with Bifidobacterium lactis and inulin (0.5 %) after cooling . A sample was made without inulin as a control. Bifidobacterium lactis population was enumerated at days 0, 4, 8 and 12 together with measurement of pH, acidity and viscosity of the samples. Also sensory property of the product was evaluated by a 15 panel testers. The number of live bacterial cells was maintained at the functional level of 106-108 cfu/ml after keeping for 12 days in refrigerated temperature (4°C). Coliforms were found to be absent in the products during the storage. Chocolate milk containing 1% fat and inulin has the best effect on the survival and number of B. lactis at day 8 and after that. Moreover, the addition of inulin did not affect the sensorial quality of the product. In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of B. lactis and inulin.

Keywords: chocolate milk, synbiotic, bifidobacterium lactis, inulin

Procedia PDF Downloads 362
2381 Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products

Authors: E. Pretorius, A. M. Viljoen, M. van der Bank

Abstract:

Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer.

Keywords: Buchu, substitution, barcoding, BRONX algorithm, matK, ycf1, UPLC-MS

Procedia PDF Downloads 130
2380 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations

Authors: Fatemeh Sadat Sharifi

Abstract:

In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.

Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW

Procedia PDF Downloads 208
2379 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 159
2378 Investigation on Scattered Dose Rate and Exposure Parameters during Diagnostic Examination Done with an Overcouch X-Ray Tube in Nigerian Teaching Hospital

Authors: Gbenga Martins, Christopher J. Olowookere, Lateef Bamidele, Kehinde O. Olatunji

Abstract:

The aims of this research are to measure the scattered dose rate during an X-ray examination in an X-ray room, compare the scattered dose rate with exposure parameters based on the body region examined, and examine the X-ray examination done with an over couch tube. The research was carried out using Gamma Scout software installation on the computer system (Laptop) to record the radiation counts, pulse rate, and dose rate. The measurement was employed by placing the detector at 900 to the incident X-ray. Proforma was used for the collection of patients’ data such as age, sex, examination type, and initial diagnosis. Data such as focus skin distance (FSD), body mass index (BMI), body thickness of the patients, the beam output (kVp) were collected at Obafemi Awolowo University, Ile-Ife, Western Nigeria. Total number of 136 patients was considered during this research. Dose rate range between 14.21 and 86.78 µSv/h for the plain abdominal region, 85.70 and 2.86 µSv/h for the lumbosacral region,1.3 µSv/yr and 3.6 µSv/yr in the pelvis region, 2.71 µSv/yr and 28.88 µSv/yr for leg region, 3.06 µSv/yr and 29.98 µSv/yr in hand region. The results of this study were compared with those of other studies carried out in other countries. The findings of this study indicated that the number of exposure parameters selected for each diagnostic examination contributed to the dose rate recorded. Therefore, these results call for a quality assurance program (QAP) in diagnostic X-ray units in Nigerian hospitals.

Keywords: X-radiation, exposure parameters, dose rate, pulse rate, number of counts, tube current, tube potential, diagnostic examination, scattered radiation

Procedia PDF Downloads 118
2377 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise

Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh

Abstract:

For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.

Keywords: ear protector, hearing system, occupational noise, workers

Procedia PDF Downloads 171
2376 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 597
2375 The Effectiveness of a Program Based on the Employment of the Proposed Folk Songs to Enrich the Visual Expressive Drawings with the Artistic Connotations for the Early Stage Childhood

Authors: Ahmed Mousa, Huda Mazeed

Abstract:

The research aims to determine the appropriate songs and artistic indications for the kindergarten child. In addition, it aims to use the songs of folk to develop expressive visual drawings with artistic connotations for the kindergarten child. The current research used a one group semi-experimental approach to identify the impact of songs on expressive children's drawings. The research community is represented in the educational administration in Giza Governorate for the academic year (2018 - 2019). The sample was taken from the kindergarten of Gamal Abdel Nasser School of Dokki Educational Administration in Giza Governorate. The study was applied to the second level children sample (5-6 years), where they numbered 20 children, males and females. The research results show that there are statistically significant differences between the average scores of the children of the experimental group in the pre and post-measurements on the observation card for children after hearing the songs of social and national folk in favor of post measurement. Moreover, the results demonstrate that there are no statistically significant differences between the average scores of children in the experimental group in the measurements, the post and follow-up, on the observation card of children's drawings for social and national folk.

Keywords: folk songs, visual expressive, artistic connotations, early childhood

Procedia PDF Downloads 180
2374 Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR

Procedia PDF Downloads 483
2373 Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region

Authors: Akinyemi Tomiwa

Abstract:

The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions.

Keywords: rain microstructure, drop size distribution, rain rates, stratiform, convective.

Procedia PDF Downloads 38
2372 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system

Procedia PDF Downloads 197
2371 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 228
2370 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 148
2369 Orbital Tuning of Marl-Limestone Alternations (Upper Tithonian to Upper Berriasian) in North-South Axis (Tunisia): Geochronology and Sequence Implications

Authors: Hamdi Omar Omar, Hela Fakhfakh, Chokri Yaich

Abstract:

This work reflects the integration of different techniques, such as field sampling and observations, magnetic susceptibility measurement, cyclostratigaraphy and sequence stratigraphy. The combination of these results allows us to reconstruct the environmental evolution of the Sidi Khalif Formation in the North-South Axis (NOSA), aged of Upper Tithonian, Berriasian and Lower Valanginian. Six sedimentary facies were identified and are primarily influenced by open marine sedimentation receiving increasing terrigenous influx. Spectral analysis, based on MS variation (for the outcropped section) and wireline logging gamma ray (GR) variation (for the sub-area section) show a pervasive dominance of 405-kyr eccentricity cycles with the expression of 100-kyr eccentricity, obliquity and precession. This study provides (for the first time) a precise duration of 2.4 myr for the outcropped Sidi Khalif Formation with a sedimentation rate of 5.4 cm/kyr and the sub-area section to 3.24 myr with a sedimentation rate of 7.64 cm/kyr. We outlined 27 5th-order depositional sequences, 8 Milankovitch depositional sequences and 2 major 3rd-order cycles for the outcropping section, controlled by the long eccentricity (405 kyr) cycles and the precession index cycles. This study has demonstrated the potential of MS and GR to be used as proxies to develop an astronomically calibrated time-scale for the Mesozoic era.

Keywords: Berriasian, magnetic susceptibility, orbital tuning, Sidi Khalif Formation

Procedia PDF Downloads 268
2368 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 164
2367 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 122
2366 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model

Procedia PDF Downloads 148
2365 Evaluation and Analysis of the Regulations of Health and Safety in the Construction Industry: A Case of Study in Skikda, Algeria

Authors: Khorief Ouissem, Sassi Boudmagh Souad, Mahimoud Aissa

Abstract:

The health and safety problem in the construction companies has been a major subject of research in Algeria for many years. The latest statistics of the Algerian National Social Security Fund (CNAS) shows that a third of accidents recorded at the national level are originated from construction activities. It is becoming increasingly essential and urgent to investigate and address its causes in order to find measures to overcome the deficiencies in this area. Thus, this paper takes in investigating this problem through a study conducted in the city of Skikda, Algeria. The study was carried out through questionnaire where twenty construction companies were taking into consideration. First, the study identifies the regulations and the laws related to the health and safety in the construction sector in Algeria. Then it goes on to assess and evaluate the implementation of the identified regulations in the companies selected. The result of the assessment indicates that the majority of the construction companies considered do not meet the health and safety standards and regulations. To extract the main causes of the failure of the system to control this industry, the observations and the evaluation were analyzed using the 5M or Ichikawa diagram method. This method is based on identifying the causes of the problem in terms of purpose, the list of potential causes for families. These families often correspond to 5M (Labor, Material, Methods, Middle, and Management). Finally, having identified the primary motives, the present authors propose a list of actions to move towards a more controlled and effective health and safety system for the construction industry.

Keywords: health and safety, construction industry, performance measurement, Algeria

Procedia PDF Downloads 342
2364 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements

Authors: Riccardo Pasquali, Keith Harlin, Mark Muller

Abstract:

The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.

Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland

Procedia PDF Downloads 187
2363 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy

Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie

Abstract:

Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.

Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy

Procedia PDF Downloads 404
2362 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 76
2361 Decoding WallStreetBets: The Impact of Daily Disagreements on Trading Volumes

Authors: F. Ghandehari, H. Lu, L. El-Jahel, D. Jayasuriya

Abstract:

Disagreement among investors is a fundamental aspect of financial markets, significantly influencing market dynamics. Measuring this disagreement has traditionally posed challenges, often relying on proxies like analyst forecast dispersion, which are limited by biases and infrequent updates. Recent movements in social media indicate that retail investors actively seek financial advice online and can influence the stock market. The evolution of the investing landscape, particularly the rise of social media as a hub for financial advice, provides an alternative avenue for real-time measurement of investor sentiment and disagreement. Platforms like Reddit offer rich, community-driven discussions that reflect genuine investor opinions. This research explores how social media empowers retail investors and the potential of leveraging textual analysis of social media content to capture daily fluctuations in investor disagreement. This study investigates the relationship between daily investor disagreement and trading volume, focusing on the role of social media platforms in shaping market dynamics, specifically using data from WallStreetBets (WSB) on Reddit. This paper uses data from 2020 to 2023 from WSB and analyses 4,896 firms with enough social media activity in WSB to define stock-day level disagreement measures. Consistent with traditional theories that disagreement induces trading volume, the results show significant evidence supporting this claim through different disagreement measures derived from WSB discussions.

Keywords: disagreement, retail investor, social finance, social media

Procedia PDF Downloads 42
2360 The Efficacy of Andrographis paniculata and Chromolaena odorata Plant Extract against Malaria Parasite

Authors: Funmilola O. Omoya, Abdul O. Momoh

Abstract:

Malaria constitutes one of the major health problems in Nigeria. One of the reasons attributed for the upsurge was the development of resistance of Plasmodium falciparum and the emergence of multi-resistant strains of the parasite to anti-malaria drugs. A continued search for other effective, safe and cheap plant-based anti-malaria agents thus becomes imperative in the face of these difficulties. The objective of this study is therefore to evaluate the in vivo anti-malarial efficacy of ethanolic extracts of Chromolaena odorata and Androgaphis paniculata leaves. The two plants were evaluated for their anti-malaria efficacy in vivo in a 4-day curative test assay against Plasmodium berghei strain in mice. The group treated with 500mg/ml dose of ethanolic extract of A. paniculata plant showed parasite suppression with increase in Packed Cell Volume (PCV) value except day 3 which showed a slight decrease in PCV value. During the 4-day curative test, an increase in the PCV values, weight measurement and zero count of Plasmodium berghei parasite values was recorded after day 3 of drug administration. These results obtained in group treated with A. paniculata extract showed anti-malarial efficacy with higher mortality rate in parasitaemia count when compared with Chromolaena odorata group. These results justify the use of ethanolic extracts of A. paniculata plant as medicinal herb used in folklore medicine in the treatment of malaria.

Keywords: anti-malaria, curative, plant-based anti-malaria agents, biology

Procedia PDF Downloads 304
2359 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 186
2358 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 158
2357 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 105
2356 The Role of Cyfra 21-1 in Diagnosing Non Small Cell Lung Cancer (NSCLC)

Authors: H. J. T. Kevin Mozes, Dyah Purnamasari

Abstract:

Background: Lung cancer accounted for the fourth most common cancer in Indonesia. 85% of all lung cancer cases are the Non-Small Cell Lung Cancer (NSCLC). The indistinct signs and symptoms of NSCLC sometimes lead to misdiagnosis. The gold standard assessment for the diagnosis of NSCLC is the histopathological biopsy, which is invasive. Cyfra 21-1 is a tumor marker, which can be found in the intermediate protein structure in the epitel. The accuracy of Cyfra 21-1 in diagnosing NSCLC is not yet known, so this report is made to seek the answer for the question above. Methods: Literature searching is done using online databases. Proquest and Pubmed are online databases being used in this report. Then, literature selection is done by excluding and including based on inclusion criterias and exclusion criterias. The selected literature is then being appraised using the criteria of validity, importance, and validity. Results: From six journals appraised, five of them are valid. Sensitivity value acquired from all five literature is ranging from 50-84.5 %, meanwhile the specificity is 87.8 %-94.4 %. Likelihood the ratio of all appraised literature is ranging from 5.09 -10.54, which categorized to Intermediate High. Conclusion: Serum Cyfra 21-1 is a sensitive and very specific tumor marker for diagnosis of non-small cell lung cancer (NSCLC).

Keywords: cyfra 21-1, diagnosis, nonsmall cell lung cancer, NSCLC, tumor marker

Procedia PDF Downloads 232
2355 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 130