Search results for: graph-based optimization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5908

Search results for: graph-based optimization algorithm

2158 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 255
2157 Bayesian Hidden Markov Modelling of Blood Type Distribution for COVID-19 Cases Using Poisson Distribution

Authors: Johnson Joseph Kwabina Arhinful, Owusu-Ansah Emmanuel Degraft Johnson, Okyere Gabrial Asare, Adebanji Atinuke Olusola

Abstract:

This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rates within and across the two geographical areas differ according to blood type.

Keywords: BP-HMM, COVID-19, blood types, GIBBS sampler

Procedia PDF Downloads 109
2156 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform

Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee

Abstract:

It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.

Keywords: CFD, Coanda, lift, UAV

Procedia PDF Downloads 121
2155 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 343
2154 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 53
2153 A Secure Routing Algorithm for ‎Underwater Wireless Sensor Networks

Authors: Seyed Mahdi Jameii

Abstract:

Underwater wireless sensor networks have been attracting the interest of many ‎researchers lately, and the past three decades have beheld the rapid progress of ‎underwater acoustic communication. One of the major problems in underwater wireless ‎sensor networks is how to transfer data from the moving node to the base stations and ‎choose the optimized route for data transmission. Secure routing in underwater ‎wireless sensor network (UWCNs) is necessary for packet delivery. Some routing ‎protocols are proposed for underwater wireless sensor networks. However, a few ‎researches have been done on secure routing in underwater sensor networks. In this ‎article, a secure routing protocol is provided to resist against wormhole and sybil ‎attacks. The results indicated acceptable performance in terms of increasing the packet ‎delivery ratio with regards to the attacks, increasing network lifetime by creating ‎balance in the network energy consumption, high detection rates against the attacks, ‎and low-end to end delay.‎

Keywords: attacks, routing, security, underwater wireless sensor networks

Procedia PDF Downloads 394
2152 Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing

Authors: H. Samadiyeh, R. Khajavi

Abstract:

A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples.

Keywords: Finite Difference Method, Graphics Processing Unit (GPU), Message Passing Interface (MPI), Modal, Wave propagation

Procedia PDF Downloads 274
2151 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 186
2150 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 382
2149 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping

Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello

Abstract:

Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.

Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration

Procedia PDF Downloads 148
2148 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 277
2147 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 649
2146 Automatic Queuing Model Applications

Authors: Fahad Suleiman

Abstract:

Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.

Keywords: queuing systems, queuing system models, scheduling algorithms, patients

Procedia PDF Downloads 328
2145 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 483
2144 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples

Authors: Abu Harera Nadeem, Kingsley Donkor

Abstract:

Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.

Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction

Procedia PDF Downloads 99
2143 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation

Procedia PDF Downloads 119
2142 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 218
2141 Materialized View Effect on Query Performance

Authors: Yusuf Ziya Ayık, Ferhat Kahveci

Abstract:

Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.

Keywords: cost of query, database management systems, materialized view, query performance

Procedia PDF Downloads 259
2140 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 96
2139 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes

Authors: Zahra Khan

Abstract:

Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.

Keywords: gelatin, hydrogels, flexible materials, SERS

Procedia PDF Downloads 97
2138 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 122
2137 Resource Constrained Time-Cost Trade-Off Analysis in Construction Project Planning and Control

Authors: Sangwon Han, Chengquan Jin

Abstract:

Time-cost trade-off (TCTO) is one of the most significant part of construction project management. Despite the significance, current TCTO analysis, based on the Critical Path Method, does not consider resource constraint, and accordingly sometimes generates an impractical and/or infeasible schedule planning in terms of resource availability. Therefore, resource constraint needs to be considered when doing TCTO analysis. In this research, genetic algorithms (GA) based optimization model is created in order to find the optimal schedule. This model is utilized to compare four distinct scenarios (i.e., 1) initial CPM, 2) TCTO without considering resource constraint, 3) resource allocation after TCTO, and 4) TCTO with considering resource constraint) in terms of duration, cost, and resource utilization. The comparison results identify that ‘TCTO with considering resource constraint’ generates the optimal schedule with the respect of duration, cost, and resource. This verifies the need for consideration of resource constraint when doing TCTO analysis. It is expected that the proposed model will produce more feasible and optimal schedule.

Keywords: time-cost trade-off, genetic algorithms, critical path, resource availability

Procedia PDF Downloads 156
2136 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight

Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez

Abstract:

As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.

Keywords: aerodynamic, Cessna, Citation X, optimization, winglet

Procedia PDF Downloads 218
2135 An Open Source Advertisement System

Authors: Pushkar Umaranikar, Chris Pollett

Abstract:

An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day’s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements.

Keywords: online markets, online ad system, online auctions, search engines

Procedia PDF Downloads 300
2134 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 168
2133 Real-Time Adaptive Obstacle Avoidance with DS Method and the Influence of Dynamic Environments Change on Different DS

Authors: Saeed Mahjoub Moghadas, Farhad Asadi, Shahed Torkamandi, Hassan Moradi, Mahmood Purgamshidian

Abstract:

In this paper, we present real-time obstacle avoidance approach for both autonomous and non-autonomous DS-based controllers and also based on dynamical systems (DS) method. In this approach, we can modulate the original dynamics of the controller and it allows us to determine safety margin and different types of DS to increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle and especially when robot moves very fast in changeable complex environments. The method is validated in simulation and influence of different autonomous and non-autonomous DS such as limit cycles, and unstable DS on this algorithm and also the position of different obstacles in complex environment is explained. Finally, we describe how the avoidance trajectories can be verified through different parameters such as safety factor.

Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, DS-based controllers

Procedia PDF Downloads 369
2132 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 338
2131 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites

Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande

Abstract:

The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.

Keywords: delamination, FRP composite, Taguchi design, multi response optimization

Procedia PDF Downloads 251
2130 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 325
2129 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis

Authors: Bokku Kang, Changsoo Chon, Han Sung Kim

Abstract:

We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.

Keywords: lumber spine, internal fixation device, finite element method, biomechanics

Procedia PDF Downloads 360