Search results for: fifth-generation district heating network
3399 Early Childhood Education in a Depressed Economy in Nigeria: Implication in the Classroom
Authors: Ogunnaiya Racheal Taiwo
Abstract:
Children's formative years are crucial to their growth; it is, therefore, necessary for all the stakeholders to ensure that the pupils have an enabling quality of life which is essential for realizing their potential. For children to live and grow, they need a secure home, nutritious food, good health care, and quality education. This paper, therefore, investigates the implications of a depressed economy on the classroom learning of Nigerian children as it is clear that Nigeria is currently experiencing the worst economic depression in several decades, which affects a substantial proportion of children. The study is qualitative research, and it adopts a phenomenological approach where the experiences of respondents are examined qualitatively. Three senatorial districts in Oyo State were considered, and 50 teachers, both male, and female were chosen from each senatorial district for an interview through conversational key informants' interviews. The interviewees were recorded, transcribed, and presented using thematic analysis. Findings showed that more children have dropped out since the beginning of the year than in previous years. It was also recorded that learning has become challenging as children now find it harder to acquire learning materials. It was recommended that the government should reimburse early childhood schools to lessen the effect of the inability to purchase materials and pay school fees. It was also recommended that an intervention be made to approach and resolve issues associated with out-of-school children.Keywords: childhood, classroom, education, depressed economy, poverty
Procedia PDF Downloads 1063398 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering
Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif
Abstract:
The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures
Procedia PDF Downloads 4543397 Patterns, Determinants, and Implications of Rural-Urban Migration in the Garhwal Himalaya
Authors: Saurav Kumar
Abstract:
Rural-urban migration is the most commonly adopted strategy in rural areas to overcome the risk associated with the subsistence economy and diversify income. The Garhwal Himalaya has the highest rate of rural-urban migration in India, which has serious repercussions. Despite this, there is a dearth of literature on the implications of rural-urban migration in the Garhwal Himalaya. This paper attempts to fill this void. The objectives of the paper are to look into various types, patterns, determinants, and implications of rural-urban migration in the Garhwal Himalaya. In order to meet the objectives, 15 villages were selected from five districts of the Garhwal Himalaya. In every district, three villages were chosen from different altitudes, including five from river valleys, five from mid-altitudes, and five from highlands. The villages range in altitude from 550m to 2660m. A total of 658 households were surveyed from the villages, covering 100% samples from each village. Using a structured questionnaire, the author asked the heads of each household about the types of rural-urban migration they practiced, the year of first migration, destinations of migration, and reasons for migration. Further, migrants’ age, sex, caste, marital status, educational background, income, occupation, and remittances sent by migrants were also inquired about. The study reveals that rural-urban migration is a serious problem in Garhwal Himalayas, posing various socio-economic issues. Without immediate action, it will have serious consequences. Finally, this study suggests some policy measures to minimize the current rate of rural-urban migration in the Garhwal Himalaya.Keywords: rural-urban migration, Garhwal Himalaya, patterns, determinants, implications
Procedia PDF Downloads 1293396 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh
Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran
Abstract:
In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques
Procedia PDF Downloads 2493395 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 5523394 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People
Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos
Abstract:
In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.Keywords: nutritional satus, MNA, BMI, elderly
Procedia PDF Downloads 3243393 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1373392 Analyzing of Good Dairy Practices in Dairy Farm Management in Sleman, Daerah Istimewa Yogyakarta: The Effect of Good Management in Milk Production
Authors: Dandi Riswanto, Mahendra Wahyu Eka Pradana, Hutomo Abdurrohman
Abstract:
The dairy farm has strategic roles in meeting the demand of foods. Sleman Regency is a central dairy production in Daerah Istimewa Yogyakarta. Sleman district has a population of 3954 heads dairy cattle with an environmental temperature of 22 to 35 degrees Celsius and humidity 74 to 87% which makes a good location for a dairy cattle farm. The dairy cattle that are kept by the majority of the Friesian Holstein Crossbreed are predominantly reared by conventional management. Sleman Regency accounts for 7.3% of national milk production. Factors influencing include genetic, environmental, and management. The purpose of this research was to determine the effect of Good Dairy Farming Practices (GDFP) application on milk production in Sleman Regency. The data collection was conducted in January 2017 until May 2017 using survey and interviews methods at 5 locations of dairy farms selected randomly. Data were analyzed with the chi-square test. The result of this research showed that GDFP point was management 1,47 points (less good). The result showed that Good Dairy Farming Practices (GDFP) has a positive effect on milk production.Keywords: dairy cattle, GDFP, milk production, Sleman regency
Procedia PDF Downloads 2193391 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 2213390 Flexible Communication Platform for Crisis Management
Authors: Jiří Barta, Tomáš Ludík, Jiří Urbánek
Abstract:
The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.Keywords: crisis management, information systems, interoperability, crisis communication, security environment, communication platform
Procedia PDF Downloads 4753389 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution
Authors: Tarek Sedki
Abstract:
Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins
Procedia PDF Downloads 1423388 Seasonal Variation in Free Radical Scavenging Properties of Indian Moringa (Moringa Oleifera)
Authors: Awadhesh Kishore, Tushar Sharma
Abstract:
The goal of this study was to compare the free radical-scavenging (FRS) characteristics of four Indian moringa (Moringa oleifera) plant components: flowers, tender and mature leaves, and seeds that were collected from three Indian districts: Jaipur, Dehra Dun, and Gwalior; in every month of 2021–2022. The samples were collected from three randomly selected agroforest locations from each district. The samples were extracted, and antioxidant properties were determined following the DPPH method with minor modifications. The FRS properties were calculated as the non-absorbance values of the sample in percentage. The factorial ANOVA statistical analysis technique was implemented for comparing FRS properties, and an MS Office Excel 2016 analysis pack was used to compare data. The flowers from Dehra Dun had superior FRS properties (27.06±1.03%), while the seeds from the same location were inferior (8.64±0.17%). The FRS properties of flowers (26.27±0.61%) were not statistically different (P > 0.05) compared to those of tender (27.30±0.63%) and mature leaves (28.37±0.59%), but significantly higher (P < 0.05) than those of seeds (9.31±0.16%). However, the FRS properties in Indian moringa were significantly higher during the winter (Jan 28.67±1.48%) compared to that in the summer (Jun 14.03±0.79%) season, but collected from three locations, viz. Gwalior (22.35±0.70%), Jaipur (23.06±0.73%), and Dehra Dun (23.10±0.76%), were not significantly different (P > 0.05). Based on this study, it can be concluded that the FRS value of flowers during the winter season is superior.Keywords: flowers, free radical-scavenging, leaves, moringa oleifera, seeds
Procedia PDF Downloads 733387 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation
Authors: Victor Oyewumi Ogunbiyi
Abstract:
Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja
Procedia PDF Downloads 813386 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks
Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis
Abstract:
The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.Keywords: comparative factor, carrier aggregation, indoor mobile network, resource allocation
Procedia PDF Downloads 1783385 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 4073384 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore
Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong
Abstract:
Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.Keywords: hydrology, modeling, water quality, wetland
Procedia PDF Downloads 1403383 Preparation of Magnetothermally Responsive Polymer Multilayer Films for Controlled Release Applications from Surfaces
Authors: Eda Cagli, Irem Erel Goktepe
Abstract:
Externally triggered and effective release of therapeutics from polymer nanoplatforms is one of the key issues in cancer treatment. In this study, we aim to prepare polymer multilayer films which are stable at physiological conditions (little or no drug release) but release drug molecules at acidic pH and via application of AC magnetic field. First, novel stimuli responsive diblock copolymers composed of pH- and temperature-responsive blocks were synthesized. Then, block copolymer micelles with pH-responsive core and temperature responsive coronae will be obtained via pH-induced self-assembly of these block copolymers in aqueous environment. A model anticancer drug, e.g. Doxorubicin will be loaded in the micellar cores. Second, superparamagnetic nanoparticles will be synthesized. Magnetic nanoparticles and drug loaded block copolymer micelles will be used as building blocks to construct the multilayers. To mimic the acidic nature of the tumor tissues, Doxorubicin release from the micellar cores will be induced at acidic conditions. Moreover, Doxorubicin release from the multilayers will be facilitated via magnetothermal trigger. Application of AC magnetic field will induce the heating of magnetic nanoparticles resulting in an increase in the temperature of the polymer platform. This increase in temperature is expected to trigger conformational changes on the temperature-responsive micelle coronae and facilitate the release of Doxorubicin from the surface. Such polymer platform may find use in biomedical applications.Keywords: layer-by-layer films, magnetothermal trigger, smart polymers, stimuli responsive
Procedia PDF Downloads 3643382 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity
Procedia PDF Downloads 2963381 Mother's Knowledge, Attitude and Practices towards Childhood Immunization in District Nankana Sahib
Authors: Farina Maqbool
Abstract:
Background: It is well said that children are considered the future masons of the country and a healthy brain is found in a healthy body. Therefore, a healthy generation can be produced by giving knowledge of immunization to mothers. Immunization is the most lucrative public health intrusion that has placed the greatest effect on the health of the people. The main objective of the present study was to find out the mother’s knowledge, attitude, and practices towards childhood immunization. Methods: Multistage sampling technique was used. One hundred and sixty mothers were selected conveniently who have at least one child up to two years. Data were collected through the face to face interview. The chi-square test was used to test the significance of the association between independent and dependent variables. Data were analyzed using the Statistical Package for Social Science. Results: A higher percentage of mothers (85.0%) knew vaccine-preventable diseases. Major proportion (82.5%) of the mothers had thought that immunization is important for their child’s health. A majority (66.3%) of the respondents’ children were fully immunized, whereas 26.3 percent of them were replied negatively. Remaining 7.5 percent of the respondents’ child un-immunized Chi-square value (39.14) shows a highly significant association between the education of the respondents and receiving of all recommended vaccines for children. Gamma value shows a strong positive relationship between the variables.Keywords: attitude, childhood, immunization, knowledge, practices
Procedia PDF Downloads 1413380 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field
Authors: Aijuka Nicholas
Abstract:
A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones
Procedia PDF Downloads 1473379 Structural Insulated Panels
Authors: R. Padmini, G. V. Manoj Kumar
Abstract:
Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources
Procedia PDF Downloads 4363378 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 1073377 Application of Interferometric Techniques for Quality Control Oils Used in the Food Industry
Authors: Andres Piña, Amy Meléndez, Pablo Cano, Tomas Cahuich
Abstract:
The purpose of this project is to propose a quick and environmentally friendly alternative to measure the quality of oils used in food industry. There is evidence that repeated and indiscriminate use of oils in food processing cause physicochemical changes with formation of potentially toxic compounds that can affect the health of consumers and cause organoleptic changes. In order to assess the quality of oils, non-destructive optical techniques such as Interferometry offer a rapid alternative to the use of reagents, using only the interaction of light on the oil. Through this project, we used interferograms of samples of oil placed under different heating conditions to establish the changes in their quality. These interferograms were obtained by means of a Mach-Zehnder Interferometer using a beam of light from a HeNe laser of 10mW at 632.8nm. Each interferogram was captured, analyzed and measured full width at half-maximum (FWHM) using the software from Amcap and ImageJ. The total of FWHMs was organized in three groups. It was observed that the average obtained from each of the FWHMs of group A shows a behavior that is almost linear, therefore it is probable that the exposure time is not relevant when the oil is kept under constant temperature. Group B exhibits a slight exponential model when temperature raises between 373 K and 393 K. Results of the t-Student show a probability of 95% (0.05) of the existence of variation in the molecular composition of both samples. Furthermore, we found a correlation between the Iodine Indexes (Physicochemical Analysis) and the Interferograms (Optical Analysis) of group C. Based on these results, this project highlights the importance of the quality of the oils used in food industry and shows how Interferometry can be a useful tool for this purpose.Keywords: food industry, interferometric, oils, quality control
Procedia PDF Downloads 3723376 Training Can Increase Knowledge and Skill of Teacher's on Measurement and Assessment Nutritional Status Children
Authors: Herawati Tri Siswati, Nurhidayat Ana Sıdık Fatimah
Abstract:
The Indonesia Basic Health Research, 2013 showed that prevalence of stunting of 6–12 children years old was 35,6%, wasting was 12,2% and obesiy was 9,2%. The Indonesian Goverment have School Health Program, held in coordination, plans, directing and responsible, developing and implement health student. However, it's implementation still under expected, while Indonesian Ministry of Health has initiated the School Health Program acceleration. This aimed is to know the influencing of training to knowledge and skill of elementary school teacher about measurement and assesment nutrirional status children. The research is quasy experimental with pre-post design, in Sleman disctrict, Yogyakarta province, Indonesia, 2015. Subject was all of elementary school teacher’s who responsible in School Health Program in Gamping sub-district, Sleman, Yogyakarta, i.e. 32 persons. The independent variable is training, while the dependent variable are teacher’s klowledge and skill on measurement and assesment nutrirional status children. The data was analized by t-test. The result showed that the knowledge score before training is 31,6±9,7 and after 56,4±12,6, with an increase 24,8±15,7, and p=0.00. The skill score before training is 46,6±11,1 and after 61,7±13, with an increase 15,2±14,2, p = 0.00. Training can increase the teacher’s klowledge and skill on measurement and assesment nutrirional status.Keywords: training, school health program, nutritional status, children.
Procedia PDF Downloads 3923375 Efficient Backup Protection for Hybrid WDM/TDM GPON System
Authors: Elmahdi Mohammadine, Ahouzi Esmail, Najid Abdellah
Abstract:
This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks.Keywords: Wavlenght Division Multiplexed Passive Optical Network (WDM-PON), Time Division Multiplexed PON (TDM-PON), architecture, Protection, Wavelength Selective Switches (WSS), Optical Line Protection (OLP)
Procedia PDF Downloads 5423374 The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study
Authors: J. Sharib, D. N. A. Tugi, M. T. Ishak, M. I. A. Adziz
Abstract:
The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons.Keywords: depth penetration, dry season, wet season, sembrong catchment, well type container
Procedia PDF Downloads 1273373 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1593372 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 553371 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman
Abstract:
An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.Keywords: silicon carbide, carbon fibers, additive manufacturing, composite
Procedia PDF Downloads 743370 A Comparative Study of the Proposed Models for the Components of the National Health Information System
Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi
Abstract:
National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.Keywords: National Health Information System, components of the NHIS, Lippeveld Model
Procedia PDF Downloads 421