Search results for: machine learning tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16930

Search results for: machine learning tools and techniques

13240 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 274
13239 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 250
13238 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 139
13237 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 433
13236 Educational Debriefing in Prehospital Medicine: A Qualitative Study Exploring Educational Debrief Facilitation and the Effects of Debriefing

Authors: Maria Ahmad, Michael Page, Danë Goodsman

Abstract:

‘Educational’ debriefing – a construct distinct from clinical debriefing – is used following simulated scenarios and is central to learning and development in fields ranging from aviation to emergency medicine. However, little research into educational debriefing in prehospital medicine exists. This qualitative study explored the facilitation and effects of prehospital educational debriefing and identified obstacles to debriefing, using the London’s Air Ambulance Pre-Hospital Care Course (PHCC) as a model. Method: Ethnographic observations of moulages and debriefs were conducted over two consecutive days of the PHCC in October 2019. Detailed contemporaneous field notes were made and analysed thematically. Subsequently, seven one-to-one, semi-structured interviews were conducted with four PHCC debrief facilitators and three course participants to explore their experiences of prehospital educational debriefing. Interview data were manually transcribed and analysed thematically. Results: Four overarching themes were identified: the approach to the facilitation of debriefs, effects of debriefing, facilitator development, and obstacles to debriefing. The unpredictable debriefing environment was seen as both hindering and paradoxically benefitting educational debriefing. Despite using varied debriefing structures, facilitators emphasised similar key debriefing components, including exploring participants’ reasoning and sharing experiences to improve learning and prevent future errors. Debriefing was associated with three principal effects: releasing emotion; learning and improving, particularly participant compound learning as they progressed through scenarios; and the application of learning to clinical practice. Facilitator training and feedback were central to facilitator learning and development. Several obstacles to debriefing were identified, including mismatch of participant and facilitator agendas, performance pressure, and time. Interestingly, when used appropriately in the educational environment, these obstacles may paradoxically enhance learning. Conclusions: Educational debriefing in prehospital medicine is complex. It requires the establishment of a safe learning environment, an understanding of participant agendas, and facilitator experience to maximise participant learning. Aspects unique to prehospital educational debriefing were identified, notably the unpredictable debriefing environment, interdisciplinary working, and the paradoxical benefit of educational obstacles for learning. This research also highlights aspects of educational debriefing not extensively detailed in the literature, such as compound participant learning, display of ‘professional honesty’ by facilitators, and facilitator learning, which require further exploration. Future research should also explore educational debriefing in other prehospital services.

Keywords: debriefing, prehospital medicine, prehospital medical education, pre-hospital care course

Procedia PDF Downloads 217
13235 An Attempt to Get Communication Design Students to Reflect: A Content Analysis of Students’ Learning Journals

Authors: C. K. Peter Chuah

Abstract:

Essentially, the intention of reflective journal is meant for students to develop higher-order thinking skills and to provide a 'space' to make their learning experience and thinking, making and feeling visible, i.e., it provides students an opportunity to evaluate their learning critically by focusing on the rationale behind their thinking, making and feeling. In addition, reflective journal also gets the students to focus on how could things be done differently—the possibility, alternative point of views, and opportunities for change. It is hoped that by getting communication design students to reflect at various intervals, they could move away from mere working on the design project and pay more attention to what they thought they have learned in relation to the development of their design ability. Unfortunately, a closer examination—through content analysis—of the learning journals submitted by a group of design students revealed that most of the reflections were descriptive and tended to be a summary of what occurred in the learning experience. While many students were able to describe what they did, very few were able to explain how they were able to do something critically. It can be concluded that to get design students to reflect is a fairly easy task, but to get them to reflect critically could be very challenging. To ensure that design students could benefit from the use of reflective journal as a tool to develop their critical thinking skills, a more systematic and structured approach to the introduction of critical thinking and reflective journal should be built into the design curriculum to provide as much practice and sufficient feedback as other studio subjects.

Keywords: communication design education, critical thinking, reflection, reflective journal

Procedia PDF Downloads 286
13234 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 93
13233 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 252
13232 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
13231 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution

Authors: Najrullah Khan, Athar Ali Khan

Abstract:

The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.

Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation

Procedia PDF Downloads 535
13230 The Liability of Renewal: The Impact of Changes in Organizational Capability, Performance, Legitimacy and Pressure for Change

Authors: Alshehri Sultan

Abstract:

Organizational change has remained an important subject for many researchers in the field of organizations theory. We propose the importance of organizational liability of renewal through a model that examines how an organization can overcome potential rigidities in organizational capabilities from learning by changing capabilities. We examine whether an established organization can overcome liability of renewal by changes in organizational capabilities and how the organizational renewal process reflect on the balance between the dynamic aspect of organizational learning as demonstrated by changes in capabilities and the stabilizing aspects of organizational inertia. We found both positive relationship between organizational learning and performance, and between legitimacy and performance. Performance and legitimacy have, however, a negative relationship on the pressure for change.

Keywords: organizational capabilities, organizational liability, liability of renewal, pressure for change

Procedia PDF Downloads 527
13229 E Learning/Teaching and the Impact on Student Performance at the Postgraduate Level

Authors: Charles Lemckert

Abstract:

E-Learning and E-Teaching can mean many things to different people. For some, the implication is that all material must be delivered in an E way, while for others it only forms part of the learning/teaching process, and (unfortunately) for some it is considered too much work. However, just look around and you will see all generations learning using E devices. In this study we used different forms of teaching, including E, to look at how students responded to set activities and how they performed academically. The particular context was set around a postgraduate university course where students were either present at a face-to-face intensive workshop (on water treatment plant design) or where they were not. For the latter, students needed to make sole use of E media. It is relevant to note that even though some were at the face-to-face class, they were still exposed to E material as the lecturer did use PC projections. Additionally, some also accessed the associate E material (pdf slides and video recordings) to assist their required activities. Analysis of the student performance, in their set assignment, showed that the actual form of delivery did not affect the student performance. This is because, in the end, all the students had access to the recorded/presented E material. The study also showed (somewhat expectedly) that when the material they required for the assignment was clear, the student performance did drop. Therefore, it is possible to enhance future delivery of courses through careful reflection and appropriate support. In the end, we must remember innovation is not just restricted to E.

Keywords: postgraduate, engineering, assignment, perforamance

Procedia PDF Downloads 332
13228 A Review of Blog Assisted Language Learning Research: Based on Bibliometric Analysis

Authors: Bo Ning Lyu

Abstract:

Blog assisted language learning (BALL) has been trialed by educators in language teaching with the development of Web 2.0 technology. Understanding the development trend of related research helps grasp the whole picture of the use of blog in language education. This paper reviews current research related to blogs enhanced language learning based on bibliometric analysis, aiming at (1) identifying the most frequently used keywords and their co-occurrence, (2) clustering research topics based on co-citation analysis, (3) finding the most frequently cited studies and authors and (4) constructing the co-authorship network. 330 articles were searched out in Web of Science, 225 peer-viewed journal papers were finally collected according to selection criteria. Bibexcel and VOSviewer were used to visualize the results. Studies reviewed were published between 2005 to 2016, most in the year of 2014 and 2015 (35 papers respectively). The top 10 most frequently appeared keywords are learning, language, blog, teaching, writing, social, web 2.0, technology, English, communication. 8 research themes could be clustered by co-citation analysis: blogging for collaborative learning, blogging for writing skills, blogging in higher education, feedback via blogs, blogging for self-regulated learning, implementation of using blogs in classroom, comparative studies and audio/video blogs. Early studies focused on the introduction of the classroom implementation while recent studies moved to the audio/video blogs from their traditional usage. By reviewing the research related to BALL quantitatively and objectively, this paper reveals the evolution and development trends as well as identifies influential research, helping researchers and educators quickly grasp this field overall and conducting further studies.

Keywords: blog, bibliometric analysis, language learning, literature review

Procedia PDF Downloads 211
13227 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms

Authors: Julio Vega

Abstract:

Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.

Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node

Procedia PDF Downloads 129
13226 Surface Roughness Modeling in Dry Face Milling of Annealed and Hardened AISI 52100 Steel

Authors: Mohieddine Benghersallah, Mohamed Zakaria Zahaf, Ali Medjber, Idriss Tibakh

Abstract:

The objective of this study is to analyse the effects of cutting parameters on surface roughness in dry face milling using statistical techniques. We studied the effect of the microstructure of AISI 52100 steel on machinability before and after hardening. The machining tests were carried out on a high rigidity vertical milling machine with a 25 mm diameter face milling cutter equipped with micro-grain bicarbide inserts with PVD (Ti, AlN) coating in GC1030 grade. A Taguchi L9 experiment plan is adopted. Analysis of variance (ANOVA) was used to determine the effects of cutting parameters (Vc, fz, ap) on the roughness (Ra) of the machined surface. Regression analysis to assess the machinability of steel presented mathematical models of roughness and the combination of parameters to minimize it. The recorded results show that feed per tooth has the most significant effect on the surface condition for both steel treatment conditions. The best roughnesses were obtained for the hardened AISI 52100 steel.

Keywords: machinability, heat treatment, microstructure, surface roughness, Taguchi method

Procedia PDF Downloads 147
13225 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica

Authors: Félix David Suárez Bonilla

Abstract:

A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.

Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining

Procedia PDF Downloads 174
13224 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 639
13223 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 321
13222 Reframing the Teaching-Learning Framework in Health Sciences Education: Opportunities, Challenges and Prospects

Authors: Raul G. Angeles, Rowena R. De Guzman

Abstract:

The future workforce for health in a globalized context highlights better health human resource planning. Health sciences students are challenged to develop skills needed for global migration. Advancing health sciences education is crucial in preparing them to overcome border challenges. The purpose of this mixed-method, two-part study was to determine the extent by which the current instructional planning and implementation (IPI) framework is reframed with teaching approaches that foster students' 21st-century skills development and to examine participants’ over-all insights on learner-centered teaching and learning (LCTL) particularly in health sciences classrooms. Participants were groups of teachers and students drawn from a national sample through the Philippine higher education institutions (HEIs). To the participants, the use of technology, practices driven by students’ interests and enriching learning experiences through project-based learning are the approaches that must be incorporated with great extent in IPI to encourage student engagement, active learning and collaboration. Participants were asked to detail their insights of learner-centered teaching and learning and using thematic content analysis parallel insights between the groups of participants lead to three emerging themes: opportunities, challenges and prospects. More contemporary understanding of LTCL in today’s health sciences classrooms were demonstrated by the participants. Armed with true understanding, educational leaders can provide interventions appropriate to the students’ level of need, teachers’ preparation and school’s readiness in terms of resources. Health sciences classrooms are innovated to meet the needs of the current and future students.

Keywords: globalization, health workforce, role of education, student-centered teaching and learning, technology in education

Procedia PDF Downloads 206
13221 Effect of Planting Techniques on Mangrove Seedling Establishment in Kuwait Bay

Authors: L. Al-Mulla, B. M. Thomas, N. R. Bhat, M. K. Suleiman, P. George

Abstract:

Mangroves are halophytic shrubs habituated in the intertidal zones in the tropics and subtropics, forming a complex and highly dynamic coastal ecosystem. Historical evidence indicating the existence followed by the extinction of mangrove in Kuwait; hence, continuous projects have been established to reintroduce this plant to the marine ecosystem. One of the major challenges in establishing large-scale mangrove plantations in Kuwait is the very high rate of seedling mortality, which should ideally be less than 20%. This study was conducted at three selected locations in the Kuwait bay during 2016-2017, to evaluate the effect of four planting techniques on mangrove seedling establishment. Coir-pillow planting technique, comp-mat planting technique, and anchored container planting technique were compared with the conventional planting method. The study revealed that the planting techniques significantly affected the establishment of mangrove seedlings in the initial stages of growth. Location-specific difference in seedling establishment was also observed during the course of the study. However, irrespective of the planting techniques employed, high seedling mortality was observed in all the planting locations towards the end of the study; which may be attributed to the physicochemical characteristics of the mudflats selected.

Keywords: Avicennia marina (Forsk.) Vierh, coastal pollution, heavy metal accumulation, marine ecosystem, sedimentation, tidal inundation

Procedia PDF Downloads 152
13220 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)

Procedia PDF Downloads 274
13219 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 178
13218 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 78
13217 Early Talent Identification and Its Impact on Children’s Growth and Development: An Examination of “The Social Learning Theory, by Albert Bandura"

Authors: Michael Subbey, Kwame Takyi Danquah

Abstract:

Finding a child's exceptional skills and abilities at a young age and nurturing them is a challenging process. The Social Learning Theory (SLT) of Albert Bandura is used to analyze the effects of early talent identification on children's growth and development. The study examines both the advantages and disadvantages of early talent identification and stresses the significance of a moral strategy that puts the welfare of the child first. The paper emphasizes the value of a balanced approach to early talent identification that takes into account individual differences, cultural considerations, and the child's social environment.

Keywords: early talent development, social learning theory, child development, child welfare

Procedia PDF Downloads 108
13216 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 95
13215 Teaching Tools for Web Processing Services

Authors: Rashid Javed, Hardy Lehmkuehler, Franz Josef-Behr

Abstract:

Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite.

Keywords: deegree, interpolation, IDW, web processing service (WPS)

Procedia PDF Downloads 355
13214 The Relationships between Autonomy-Based Insula Activity and Learning: A Functional Magnetic Resonance Imaging Study

Authors: Woogul Lee, Johnmarshall Reeve

Abstract:

Learners’ perceived autonomy predicts learners’ interest, engagement, and learning. To understand these processes, we conducted an fMRI experiment. In this experiment, participants saw the national flag and were asked to rate how much they freely wanted to learn about that particular national flag. The participants then learned the characteristics of the national flag. Results showed that (1) the degree of participants’ perceived autonomy was positively correlated with the degree of insula activity, (2) participants’ early-trial insula activity predicted corresponding late-trial dorsolateral prefrontal cortex activity, and (3) the degree of dorsolateral prefrontal cortex activity was positively correlated with the degree of participants’ learning about the characteristics of the national flag. Results suggest that learners’ perceived autonomy predicts learning through the mediation of insula activity associated with intrinsic satisfaction and 'pure self' processes.

Keywords: insular cortex, autonomy, self-determination, dorsolateral prefrontal cortex

Procedia PDF Downloads 205
13213 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 105
13212 Teacher-Child Interactions within Learning Contexts in Prekindergarten

Authors: Angélique Laurent, Marie-Josée Letarte, Jean-Pascal Lemelin, Marie-France Morin

Abstract:

This study aims at exploring teacher-child interactions within learning contexts in public prekindergartens of the province of Québec (Canada). It is based on previous research showing that teacher-child interactions in preschools have direct and determining effects on the quality of early childhood education and could directly or indirectly influence child development. However, throughout a typical preschool day, children experience different learning contexts to promote their learning opportunities. Depending on these specific contexts, teacher-child interactions could vary, for example, between free play and shared book reading. Indeed, some studies have found that teacher-directed or child-directed contexts might lead to significant variations in teacher-child interactions. This study drew upon both the bioecological and the Teaching Through Interactions frameworks. It was conducted through a descriptive and correlational design. Fifteen teachers were recruited to participate in the study. At Time 1 in October, they completed a diary to report the learning contexts they proposed in their classroom during a typical week. At Time 2, seven months later (May), they were videotaped three times in the morning (two weeks’ time between each recording) during a typical morning class. The quality of teacher-child interactions was then coded with the Classroom Assessment Scoring System (CLASS) through the contexts identified. This tool measures three main domains of interactions: emotional support, classroom organization, and instruction support, and10 dimensions scored on a scale from 1 (low quality) to 7 (high quality). Based on the teachers’ reports, five learning contexts were identified: 1) shared book reading, 2) free play, 3) morning meeting, 4) teacher-directed activity (such as craft), and 5) snack. Based on preliminary statistical analyses, little variation was observed within the learning contexts for each domain of the CLASS. However, the instructional support domain showed lower scores during specific learning contexts, specifically free play and teacher-directed activity. Practical implications for how preschool teachers could foster specific domains of interactions depending on learning contexts to enhance children’s social and academic development will be discussed.

Keywords: teacher practices, teacher-child interactions, preschool education, learning contexts, child development

Procedia PDF Downloads 109
13211 Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites

Authors: Tigist Girma Kidane, Yalew Dessalegn Asfaw

Abstract:

Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties.

Keywords: age, bamboo species, flexural properties, harvesting season, polypropylene

Procedia PDF Downloads 52