Search results for: optical characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3979

Search results for: optical characterization

319 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier

Authors: M. V. Rane, Tareke Tekia

Abstract:

Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration

Procedia PDF Downloads 341
318 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 157
317 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 301
316 Management and Genetic Characterization of Local Sheep Breeds for Better Productive and Adaptive Traits

Authors: Sonia Bedhiaf-Romdhani

Abstract:

The sheep (Ovis aries) was domesticated, approximately 11,000 years ago (YBP), in the Fertile Crescent from Asian Mouflon (Ovis Orientalis). The Northern African (NA) sheep is 7,000 years old, represents a remarkable diversity of sheep populations reared under traditional and low input farming systems (LIFS) over millennia. The majority of small ruminants in developing countries are encountered in low input production systems and the resilience of local communities in rural areas is often linked to the wellbeing of small ruminants. Regardless of the rich biodiversity encountered in sheep ecotypes there are four main sheep breeds in the country with 61,6 and 35.4 percents of Barbarine (fat tail breed) and Queue Fine de l’Ouest (thin tail breed), respectively. Phoenicians introduced the Barbarine sheep from the steppes of Central Asia in the Carthaginian period, 3000 years ago. The Queue Fine de l’Ouest is a thin-tailed meat breed heavily concentrated in the Western and the central semi-arid regions. The Noire de Thibar breed, involving mutton-fine wool producing animals, has been on the verge of extinction, it’s a composite black coated sheep breed found in the northern sub-humid region because of its higher nutritional requirements and non-tolerance of the prevailing harsher condition. The D'Man breed, originated from Morocco, is mainly located in the southern oases of the extreme arid ecosystem. A genetic investigation of Tunisian sheep breeds using a genome-wide scan of approximately 50,000 SNPs was performed. Genetic analysis of relationship between breeds highlighted the genetic differentiation of Noire de Thibar breed from the other local breeds, reflecting the effect of past events of introgression of European gene pool. The Queue Fine de l’Ouest breed showed a genetic heterogeneity and was close to Barbarine. The D'Man breed shared a considerable gene flow with the thin-tailed Queue Fine de l'Ouest breed. Native small ruminants breeds, are capable to be efficiently productive if essential ingredients and coherent breeding schemes are implemented and followed. Assessing the status of genetic variability of native sheep breeds could provide important clues for research and policy makers to devise better strategies for the conservation and management of genetic resources.

Keywords: sheep, farming systems, diversity, SNPs.

Procedia PDF Downloads 136
315 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 60
314 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 94
313 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 330
312 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 54
311 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 210
310 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 78
309 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 143
308 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy

Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler

Abstract:

Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.

Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer

Procedia PDF Downloads 291
307 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation

Procedia PDF Downloads 259
306 Fire Safe Medical Oxygen Delivery for Aerospace Environments

Authors: M. A. Rahman, A. T. Ohta, H. V. Trinh, J. Hyvl

Abstract:

Atmospheric pressure and oxygen (O2) concentration are critical life support parameters for human-occupied aerospace vehicles and habitats. Various medical conditions may require medical O2; for example, the American Medical Association has determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion. It may cause some passengers to experience significant symptoms and medical complications during the flight, requiring supplemental medical-grade O2 to maintain adequate tissue oxygenation and prevent hypoxemic complications. Although supplemental medical grade O2 is a successful lifesaver for respiratory and cardiac failure, O2-enriched exhaled air can contain more than 95 % O2, increasing the likelihood of a fire. In an aerospace environment, a localized high concentration O2 bubble forms around a patient being treated for hypoxia, increasing the cabin O2 beyond the safe limit. To address this problem, this work describes a medical O2 delivery system that can reduce the O2 concentration from patient-exhaled O2-rich air to safe levels while maintaining the prescribed O2 administration to the patient. The O2 delivery system is designed to be a part of the medical O2 kit. The system uses cationic multimetallic cobalt complexes to reversibly, selectively, and stoichiometrically chemisorb O2 from the exhaled air. An air-release sub-system monitors the exhaled air, and as soon the O2 percentage falls below 21%, the air is released to the room air. The O2-enriched exhaled air is channeled through a layer of porous, thin-film heaters coated with the cobalt complex. The complex absorbs O2, and when saturated, the complex is heated to 100°C using the thin-film heater. Upon heating, the complex desorbs O2 and is once again ready to absorb or remove the excess O2 from exhaled air. The O2 absorption is a sub-second process, and desorption is a multi-second process. While heating at 0.685 °C/sec, the complex desorbs ~90% O2 in 110 sec. These fast reaction times mean that a simultaneous absorb/desorb process in the O2 delivery system will create a continuous absorption of O2. Moreover, the complex can concentrate O2 by a factor of 160 times that in air and desorb over 90% of the O2 at 100°C. Over 12 cycles of thermogravimetry measurement, less than 0.1% decrease in reversibility in O2 uptake was observed. The 1 kg complex can desorb over 20L of O2, so simultaneous O2 desorption by 0.5 kg of complex and absorption by 0.5 kg of complex can potentially continuously remove 9L/min O2 (~90% desorbed at 100°C) from exhaled air. The complex is synthesized and characterized for reversible O2 absorption and efficacy. The complex changes its color from dark brown to light gray after O2 desorption. In addition to thermogravimetric analysis, the O2 absorption/desorption cycle is characterized using optical imaging, showing stable color changes over ten cycles. The complex was also tested at room temperature in a low O2 environment in its O2 desorbed state, and observed to hold the deoxygenated state under these conditions. The results show the feasibility of using the complex for reversible O2 absorption in the proposed fire safe medical O2 delivery system.

Keywords: fire risk, medical oxygen, oxygen removal, reversible absorption

Procedia PDF Downloads 92
305 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel

Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy

Abstract:

Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.

Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible

Procedia PDF Downloads 338
304 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 111
303 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments

Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy

Abstract:

Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.

Keywords: compressive strength, dredged sediments, ecological binder, geopolymers

Procedia PDF Downloads 89
302 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 50
301 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures

Authors: Haytam Kasem

Abstract:

The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.

Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model

Procedia PDF Downloads 229
300 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 92
299 Research on the Evolution of Public Space in Tourism-Oriented Traditional Rural Settlements

Authors: Yu Zhang, Mingxue Lang, Li Dong

Abstract:

The hundreds of years of slow succession of living environment in rural area is a crucial carrier of China’s long history of culture and national wisdom. In recent years, the space evolution of traditional rural settlements has been promoted by the intervention of tourism development, among which the public architecture and outdoor activity areas together served as the major places for villagers, and tourists’ social activities are an important characterization for settlement spatial evolution. Traditional public space upgrade and layout study of new public space can effectively promote the tourism industry development of traditional rural settlements. This article takes Qi County, one China Traditional Culture Village as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and Space Syntax, studies the evolution features of public space of tourism-oriented traditional rural settlements in four steps. First, acquire the 2003 and 2016 image data of Qi County, using the remote sensing application EDRAS8.6. Second, vectorize the basic maps of Qi County including its land use map with the application of ArcGIS 9.3 meanwhile, associating with architectural and site information concluded from field research. Third, analyze the accessibility and connectivity of the inner space of settlements using space syntax; run cross-correlation with the public space data of 2003 and 2016. Finally, summarize the evolution law of the public space of settlements; study the upgrade pattern of traditional public space and location plan for new public space. Major findings of this paper including: first, location layout of traditional public space has a larger association with the calculation results of space syntax and further confirmed the objective value of space syntax in expressing the space and social relations. Second, the intervention of tourism development generates remarkable impact on public space location of tradition rural settlements. Third, traditional public space produces the symbols of both strengthening and decline and forms a diversified upgrade pattern for the purpose of meeting the different tourism functional needs. Finally, space syntax provides an objective basis for location plan of new public space that meets the needs of tourism service. Tourism development has a significant impact on the evolution of public space of traditional rural settlements. Two types of public space, architecture, and site are both with changes seen from the perspective of quantity, location, dimension and function after the intervention of tourism development. Function upgrade of traditional public space and scientific layout of new public space are two important ways in achieving the goal of sustainable development of tourism-oriented traditional rural settlements.

Keywords: public space evolution, Qi county, space syntax, tourism oriented, traditional rural settlements

Procedia PDF Downloads 328
298 Contribution at Dimensioning of the Energy Dissipation Basin

Authors: M. Aouimeur

Abstract:

The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method.

Keywords: dimensioning, energy dissipation basin, hydraulic jump, protection of the environment

Procedia PDF Downloads 572
297 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology

Authors: Tatsuhiko Aizawa, Hiroshi Morita

Abstract:

The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.

Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch

Procedia PDF Downloads 82
296 A Preliminary End-Point Approach for Calculating Odorous Emissions in Life Cycle Assessment

Authors: G. M. Cappucci, C. Losi, P. Neri, M. Pini, A. M. Ferrari

Abstract:

Waste treatment and many production processes cause significant emissions of odors, thus typically leading to intense debate. The introduction of odorimetric units and their units of measurement, i.e., U.O. / m3, with the European regulation UE 13725 of 2003 designates the dynamic olfactometry as the official method for odorimetric analysis. Italy has filled the pre-existing legislative gap on the regulation of odorous emissions only recently, by introducing the Legislative Decree n°183 in 2017. The concentration of the odor to which a perceptive response occurs to 50% of the panel corresponds to the odorimetric unit of the sample under examination (1 U.O. / m3) and is equal to the threshold of perceptibility of the substance (O.T.). In particular, the treatment of Municipal Solid Waste (MSW) by Mechanical-Biological Treatment (MBT) plants produces odorous emissions, typically generated by aerobic procedures, potentially leading to significant environmental burdens. The quantification of odorous emissions represents a challenge within a LCA study since primary data are often missing. The aim of this study is to present the preliminary findings of an ongoing study whose aim is to identify and quantify odor emissions from the Tre Monti MBT plant, located in Imola (Bologna, Italy). Particularly, the issues faced with odor emissions in the present work are: i) the identification of the components of the gaseous mixture, whose total quantification in terms of odorimetric units is known, ii) the distribution of the total odorimetric units among the single substances identified and iii) the quantification of the mass emitted for each substance. The environmental analysis was carried out on the basis of the amount of emitted substance. The calculation method IMPact Assessment of Chemical Toxics (IMPACT) 2002+ has been modified since the original one does not take into account indoor emissions. Characterization factors were obtained by adopting a preliminary method in order to calculate indoor human effects. The impact and damage assessments were performed without the identification of new categories, thus in accordance with the categories of the selected calculation method. The results show that the damage associated to odorous emissions is the 0.24% of the total damage, and the most affected damage category is Human Health, mainly as a consequence of ammonia emission (86.06%). In conclusion, this preliminary approach allowed identifying and quantifying the substances responsible for the odour impact, in order to attribute them the relative damage on human health as well as ecosystem quality.

Keywords: life cycle assessment, municipal solid waste, odorous emissions, waste treatment

Procedia PDF Downloads 164
295 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 142
294 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 115
293 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 36
292 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 210
291 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 250
290 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 182