Search results for: English as a foreign language (EFL) learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11004

Search results for: English as a foreign language (EFL) learning

7344 Engaging Teacher Inquiry via New Media in Traditional and E-Learning Environments

Authors: Daniel A. Walzer

Abstract:

As the options for course delivery and development expand, plenty of misconceptions still exist concerning e-learning and online course delivery. Classroom instructors often discuss pedagogy, methodologies, and best practices regarding teaching from a singular, traditional in-class perspective. As more professors integrate online, blended, and hybrid courses into their dossier, a clearly defined rubric for gauging online course delivery is essential. The transition from a traditional learning structure towards an updated distance-based format requires careful planning, evaluation, and revision. This paper examines how new media stimulates reflective practice and guided inquiry to improve pedagogy, engage interdisciplinary collaboration, and supply rich qualitative data for future research projects in media arts disciplines.

Keywords: action research, inquiry, new media, reflection

Procedia PDF Downloads 307
7343 Impact of Pedagogical Techniques on the Teaching of Sports Sciences

Authors: Muhammad Saleem

Abstract:

Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.

Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement

Procedia PDF Downloads 24
7342 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
7341 Cultural Adjustment Problems in Academic and Social Life Experienced by Indonesian Postgraduate Students Studying in London

Authors: Erizal Lugman

Abstract:

An increasing number of students from Indonesia study in universities in the UK. Because of the substantial cultural differences between the Western and Indonesian cultures, this study investigates the issues in academic and social life experienced by Indonesian postgraduate students, with a sample of 11 Indonesian postgraduate students (8 male, 3 female) studying in London during the cultural adjustment stage. This research made use of a semi-structured interview and was analyzed qualitatively using thematic content analysis to reveal key areas of concern in the academic setting, social life, and language-related issues. The findings confirm that the most challenging aspects experienced by the participants are the use of academic English in academic situations and the students’ lack of critical thinking. Nine out of 11 students agreed that they had problems with writing essays during the cultural adjustment stage. Because of the collectivist culture in Indonesia, making friends with locals was the most concerning issue in the participants’ sociocultural adjustment, followed by difficulty in finding places to pray, looking for Halal food and using the Western toilet system The findings suggest recommendations that the students must be more aware of the cultural differences between Indonesian and Western cultures, including in the academic setting and social life. Also, the lecturers should pay more attention to their speech in the British accent which is sometimes difficult to understand.

Keywords: academic adjustment, cultural adjustment, indonesian culture, intercultural communication

Procedia PDF Downloads 136
7340 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
7339 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 585
7338 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 353
7337 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 84
7336 Spreading Japan's National Image through China during the Era of Mass Tourism: The Japan National Tourism Organization’s Use of Sina Weibo

Authors: Abigail Qian Zhou

Abstract:

Since China has entered an era of mass tourism, there has been a fundamental change in the way Chinese people approach and perceive the image of other countries. With the advent of the new media era, social networking sites such as Sina Weibo have become a tool for many foreign governmental organizations to spread and promote their national image. Among them, the Japan National Tourism Organization (JNTO) was one of the first foreign official tourism agencies to register with Sina Weibo and actively implement communication activities. Due to historical and political reasons, cognition of Japan's national image by the Chinese has always been complicated and contradictory. However, since 2015, China has become the largest source of tourists visiting Japan. This clearly indicates that the broadening of Japan's national image in China has been effective and has value worthy of reference in promoting a positive Chinese perception of Japan and encouraging Japanese tourism. Within this context and using the method of content analysis in media studies through content mining software, this study analyzed how JNTO’s Sina Weibo accounts have constructed and spread Japan's national image. This study also summarized the characteristics of its content and form, and finally revealed the strategy of JNTO in building its international image. The findings of this study not only add a tourism-based perspective to traditional national image communications research, but also provide some reference for the effective international dissemination of national image in the future.

Keywords: national image, international communication, tourism, Japan, China

Procedia PDF Downloads 130
7335 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118
7334 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences

Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam

Abstract:

The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.

Keywords: learning experiences, innovation, traditional games, trainee teachers

Procedia PDF Downloads 330
7333 Computer Assisted Learning Module (CALM) for Consumer Electronics Servicing

Authors: Edicio M. Faller

Abstract:

The use of technology in the delivery of teaching and learning is vital nowadays especially in education. Computer Assisted Learning Module (CALM) software is the use of computer in the delivery of instruction with a tailored fit program intended for a specific lesson or a set of topics. The CALM software developed in this study is intended to supplement the traditional teaching methods in technical-vocational (TECH-VOC) instruction specifically the Consumer Electronics Servicing course. There are three specific objectives of this study. First is to create a learning enhancement and review materials on the selected lessons. Second, is to computerize the end-of-chapter quizzes. Third, is to generate a computerized mock exam and summative assessment. In order to obtain the objectives of the study the researcher adopted the Agile Model where the development of the study undergoes iterative and incremental process of the Software Development Life Cycle. The study conducted an acceptance testing using a survey questionnaire to evaluate the CALM software. The results showed that CALM software was generally interpreted as very satisfactory. To further improve the CALM software it is recommended that the program be updated, enhanced and lastly, be converted from stand-alone to a client/server architecture.

Keywords: computer assisted learning module, software development life cycle, computerized mock exam, consumer electronics servicing

Procedia PDF Downloads 393
7332 Italian Sign Language and Deafness in a North-Italian Border Region: Results of Research on the Linguistic Needs of Teachers and Students

Authors: Maria Tagarelli De Monte

Abstract:

In 2021, the passage of the law recognizing Italian Sign Language (LIS) as the language of the Italian deaf minority was the input for including this visual-gestural language in the curricula of interpreters and translators choosing the academic setting for their training. Yet, a gap remains concerning LIS education of teachers and communication assistants as referring figures for people who are deaf or hard of hearing in mainstream education. As well documented in the related scientific literature, deaf children often experience severe difficulties with the languages spoken in the country where they grow up, manifesting in all levels of literacy competence. In the research introduced here, the experience of deaf students (and their teachers) attending schools is explored in areas that are characterized by strong native bilingualism, such as Friuli-Venezia Giulia (FVG), facing Italian Northeast borders. This region is peculiar as the native population may be bilingual Italian and Friulian (50% of the local population), German, and/or Slovenian. The research involved all schools of all levels in Friuli to understand the relationship between the language skills expressed by teachers and those shown by deaf learners with a background in sign language. In addition to collecting specific information on the degree of preparation of teachers in deaf-related matters and LIS, the research has allowed to highlight the role, often poorly considered, covered by the communication assistants who work alongside deaf students. On several occasions, teachers and assistants were unanimous in affirming the importance of mutual collaboration and adequate consideration of the educational-rehabilitative history of the deaf child and her family. The research was based on a mixed method of structured questionnaires and semi-structured interviews with the referring teachers. As a result, a varied and complex framework emerged, showing an asymmetry in preparing personnel dedicated to the deaf learner. Considering how Italian education has long invested in creating an inclusive and accessible school system (i.e. with the "Ten Theses for Democratic Language Education"), a constructive analysis will complete the discussion in an attempt to understand how linguistic (and modal) differences can become levers of inclusion.

Keywords: FVG, LIS, linguistic needs, deafness, teacher education, bilingual bimodal children, communication assistants, inclusion model

Procedia PDF Downloads 46
7331 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
7330 Reverse Engineering Genius: Through the Lens of World Language Collaborations

Authors: Cynthia Briggs, Kimberly Gerardi

Abstract:

Over the past six years, the authors have been working together on World Language Collaborations in the Middle School French Program at St. Luke's School in New Canaan, Connecticut, USA. Author 2 brings design expertise to the projects, and both teachers have utilized the fabrication lab, emerging technologies, and collaboration with students. Each year, author 1 proposes a project scope, and her students are challenged to design and engineer a signature project. Both partners have improved the iterative process to ensure deeper learning and sustained student inquiry. The projects range from a 1:32 scale model of the Eiffel Tower that was CNC routed to a fully functional jukebox that plays francophone music, lights up, and can hold up to one thousand songs powered by Raspberry Pi. The most recent project is a Fragrance Marketplace, culminating with a pop-up store for the entire community to discover. Each student will learn the history of fragrance and the chemistry behind making essential oils. Students then create a unique brand, marketing strategy, and concept for their signature fragrance. They are further tasked to use the industrial design process (bottling, packaging, and creating a brand name) to finalize their product for the public Marketplace. Sometimes, these dynamic projects require maintenance and updates. For example, our wall-mounted, three-foot francophone clock is constantly changing. The most recent iteration uses Chat GPT to program the Arduino to reconcile the real-time clock shield and keep perfect time as each hour passes. The lights, motors, and sounds from the clock are authentic to each region, represented with laser-cut embellishments. Inspired by Michel Parmigiani, the history of Swiss watch-making, and the precision of time instruments, we aim for perfection with each passing minute. The authors aim to share exemplary work that is possible with students of all ages. We implemented the reverse engineering process to focus on student outcomes to refine our collaborative process. The products that our students create are prime examples of how the design engineering process is applicable across disciplines. The authors firmly believe that the past and present of World cultures inspire innovation.

Keywords: collaboration, design thinking, emerging technologies, world language

Procedia PDF Downloads 43
7329 The Influence of Concreteness on English Compound Noun Processing: Modulation of Constituent Transparency

Authors: Turgut Coskun

Abstract:

'Concreteness effect' refers to faster processing of concrete words and 'compound facilitation' refers to faster response to compounds. In this study, our main goal was to investigate the interaction between compound facilitation and concreteness effect. The latter might modulate compound processing basing on constituents’ transparency patterns. To evaluate these, we created lists for compound and monomorphemic words, sub-categorized them into concrete and abstract words, and further sub-categorized them basing on their transparency. The transparency conditions were opaque-opaque (OO), transparent-opaque (TO), and transparent-transparent (TT). We used RT data from English Lexicon Project (ELP) for our comparisons. The results showed the importance of concreteness factor (facilitation) in both compound and monomorphemic processing. Important for our present concern, separate concrete and abstract compound analyses revealed different patterns for OO, TO, and TT compounds. Concrete TT and TO conditions were processed faster than Concrete OO, Abstract OO and Abstract TT compounds, however, they weren’t processed faster than Abstract TO compounds. These results may reflect on different representation patterns of concrete and abstract compounds.

Keywords: abstract word, compound representation, concrete word, constituent transparency, processing speed

Procedia PDF Downloads 198
7328 China and the Middle East in the 21st Century: From Political Mediation to Economic Expansionism

Authors: Ali Asghar Sotoudeh

Abstract:

Mediation Diplomacy has emerged as one of the main pillars of China's foreign policy goals and practices, and Beijing has established itself as a peacekeeping force in regional conflicts and crises such as Afghanistan, Syria, Sudan, Yemen, and the Arab-Israeli peace process. China is deepening and intensifying its diplomatic interventions in the Middle East and trying to shape the security and political developments in the Middle East. On the other hand, economically, China has become one of the most important trading partners with Middle Eastern governments. China is also seeking to expand its foreign policy and economic interests in the Middle East through the New Silk Road initiative and has signed cooperation agreements with 17 Arab countries. In this regard, due to the importance of the subject, this research focuses on answering this question; what is the basis of China's political mediation and economic expansionism in the Middle East? In parallel with this question, this study follows the hypothesis that the mediating role of peace is a legitimate way for China to intervene in Middle East political crises, Without causing China to deviate from its traditional guiding principles based on non-interference in the internal affairs of other actors in the international system. This policy also promotes the security of economic interests and increases the country's political influence in the Middle East. The research method is descriptive-analytical based on the qualitative method, and the data collection method is library and internet resources.

Keywords: China, middle east, political mediation, economic expansionism

Procedia PDF Downloads 144
7327 Assumption of Cognitive Goals in Science Learning

Authors: Mihail Calalb

Abstract:

The aim of this research is to identify ways for achieving sustainable conceptual understanding within science lessons. For this purpose, a set of teaching and learning strategies, parts of the theory of visible teaching and learning (VTL), is studied. As a result, a new didactic approach named "learning by being" is proposed and its correlation with educational paradigms existing nowadays in science teaching domain is analysed. In the context of VTL the author describes the main strategies of "learning by being" such as guided self-scaffolding, structuring of information, and recurrent use of previous knowledge or help seeking. Due to the synergy effect of these learning strategies applied simultaneously in class, the impact factor of learning by being on cognitive achievement of students is up to 93 % (the benchmark level is equal to 40% when an experienced teacher applies permanently the same conventional strategy during two academic years). The key idea in "learning by being" is the assumption by the student of cognitive goals. From this perspective, the article discusses the role of student’s personal learning effort within several teaching strategies employed in VTL. The research results emphasize that three mandatory student – related moments are present in each constructivist teaching approach: a) students’ personal learning effort, b) student – teacher mutual feedback and c) metacognition. Thus, a successful educational strategy will target to achieve an involvement degree of students into the class process as high as possible in order to make them not only know the learning objectives but also to assume them. In this way, we come to the ownership of cognitive goals or students’ deep intrinsic motivation. A series of approaches are inherent to the students’ ownership of cognitive goals: independent research (with an impact factor on cognitive achievement equal to 83% according to the results of VTL); knowledge of success criteria (impact factor – 113%); ability to reveal similarities and patterns (impact factor – 132%). Although it is generally accepted that the school is a public service, nonetheless it does not belong to entertainment industry and in most of cases the education declared as student – centered actually hides the central role of the teacher. Even if there is a proliferation of constructivist concepts, mainly at the level of science education research, we have to underline that conventional or frontal teaching, would never disappear. Research results show that no modern method can replace an experienced teacher with strong pedagogical content knowledge. Such a teacher will inspire and motivate his/her students to love and learn physics. The teacher is precisely the condensation point for an efficient didactic strategy – be it constructivist or conventional. In this way, we could speak about "hybridized teaching" where both the student and the teacher have their share of responsibility. In conclusion, the core of "learning by being" approach is guided learning effort that corresponds to the notion of teacher–student harmonic oscillator, when both things – guidance from teacher and student’s effort – are equally important.

Keywords: conceptual understanding, learning by being, ownership of cognitive goals, science learning

Procedia PDF Downloads 167
7326 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 90
7325 A Team-Based Learning Game Guided by a Social Robot

Authors: Gila Kurtz, Dan Kohen Vacs

Abstract:

Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.

Keywords: social robot, NAO, learning, team based activity, escape room

Procedia PDF Downloads 68
7324 Interliterariness: Teaching Dystopia in the Arab Classrooms

Authors: Firas Al-Jubouri

Abstract:

Literature has been a subject of studying English at secondary, university, and postgraduate levels in many countries and for several decades. One of the prominent literary genres, which is being increasingly used in the literature classrooms, is dystopian literature. However, since teachers usually address the educational requirements of teaching canonical English literature to meet the expected objectives of the particular 1organisation, and the learner’s needs in the non- Anglophone context, they must also negotiate the issues of cultural differences, aesthetic values, literary significance, and the rationale of storytelling. This paper examines how teaching certain dystopian themes in Aldous Huxley’s Brave New World (1932), an extremely influential dystopian canon, has to take into consideration the ideas, traditions, cultures, and means of literary interpretation inherent in the Arab Muslim world, with specific emphasis on the GCC region. It suggests the use of DionýzĎurišin’s (1929-1997) system of interliterariness in teaching world and comparative literature to help improve the interpretation of canonical literary texts in the international and inter-ethnic classrooms and contexts. Thus, this study helps to define a means of integrating global content and cross-cultural experiences into an effective teaching methodology that helps mitigate the major divides between the Anglophone text and the non-Anglophone readers.

Keywords: anglophone, dystopia, brave new world, huxley, interliterariness

Procedia PDF Downloads 77
7323 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 147
7322 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
7321 A Word-to-Vector Formulation for Word Representation

Authors: Sandra Rizkallah, Amir F. Atiya

Abstract:

This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.

Keywords: natural language processing, word to vector, text similarity, text mining

Procedia PDF Downloads 275
7320 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
7319 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: online learning, open educational resources, multimedia, technology

Procedia PDF Downloads 376
7318 Smartphones in the (Class) Room in Pandemic and Post-pandemic Times: a Study in an Ecological Perspective

Authors: Junia Braga, Antonio carlos Martins, Marcos Racilan

Abstract:

Drawing on the ecological approach, this paper reports a qualitative study that aims to understand how mobile technologies were integrated during the pandemic in the context of language teaching and the use of these technologies in post-pandemic times. Seventy-six teachers answered a questionnaire about their experiences. The findings show how the network with peers scaffolded this experience and played a crucial role in their appropriation of those technologies. They also suggest that this network may have contributed to the normalisation of digital technology use.

Keywords: ecological perspective, language teaching, mobile technologies, teacher education

Procedia PDF Downloads 108
7317 Immigration in British Southern Cameroons from 2016 to 2020

Authors: Geraldine Ambe

Abstract:

Cameroon is a country in a country in Central Africa. Before the first World War, Germany colonized Cameroon, including some parts of Gabon, Chad, Nigeria, and the Central African Republic. After the war, the United Nations divided most of the colony into Britain and France. In 1960, Eastern Cameroon (‘La Republique du Cameroon’) gained its independence from France while British Southern Cameroons obtained its independence from Britain. The two entities agreed to live together as a federal state officially called the Federal Republic of Cameroon. In 1962, the name of the name of the country was changed from the Federal Republic of Cameroon to the United Republic of Cameroon, while the Prime Minister of Western Cameroon was moved to Yaounde. In 1984, President Paul Biya singlehandedly changed the name to the Republic of Cameroon, implying that Southern Cameroon is not recognized in the union again. From the words of Am Cohen, the two territories came together to form a federal government with one currency, one army, and one foreign policy like states in the United States of America. However, the name Republic of Cameroon (‘La Republique du Cameroun’) does not recognize BSC, and this is exactly what has been practiced: politics of exclusion and excessive centralization in Yaounde. In 2016, teachers and Lawyers started strikes to call the attention of the government on the inhalation of the English culture/people. They were greeted with guns, causing the radicalization of the youths. The civil society came together to form a union to address the issues facing the people, and the government took their leaders and sentenced them to live imprisonment. The consequence was a civil war with nobody to dialogue with. Out of Cameroon, more than half a million people from BSC have been taking dangerous trips through the air, land, and sea. In the jungles and the deserts, the snow of Europe, these people have been seen for the last 4 years. This paper will present some personalities, political fractions, and their stands of decentralization, federalism, and independence as the war continues. The paper will further look at the consequence of this crisis on migration in Central and Eastern Europe.

Keywords: British Southern Cameroons, decolonization, Second World War, dialogue, civil war, immigration

Procedia PDF Downloads 204
7316 The Factors Affecting the Development of the Media and Animations for Vocational School in Thailand

Authors: Tanit Pruktara

Abstract:

The research aimed to study the students’ learning achievement and awareness level on electrical energy consumption and conservation and also to investigate the students’ attitude on the developed multimedia supplemented instructional unit for learning household electrical energy consumption and conservation in grade 10 Thailand student. This study used a quantitative method using MCQ for pre and post-achievement tests and Likert scales for awareness and attitude survey questionnaires. The results from this were employed to improve the multimedia to be appropriate for the classroom and with real life situations in the second phase, the main study. The experimental results showed that the developed learning unit significantly improved the students’ learning achievement as well as their awareness of electric energy conservation. Additional we found the student will enjoy participating in class activities when the lessons are taught using multimedia and helps them to develop the relevance between the course and real world situations.

Keywords: lesson plan, media and animations, training course, vocational school in Thailand

Procedia PDF Downloads 177
7315 Chemistry Teachers’ Perception of the Militating and Mitigating Factors Affecting the Use of Information and Communication Technology in Teaching and Learning of Chemistry

Authors: Peter I. I. Ikokwu

Abstract:

Recent developments in the world, both in the health and education sectors, have further popularized the importance of Information and Communication Technology (ICT). ICT is available for many purposes, including teaching and learning, and its use in education is believed to empower both teachers and students by making the educational process more effective and interactive. The study examined the perceptions of teachers on the factors affecting the use of ICT in the teaching and learning of chemistry and the mitigating factors. The study involved all the lecturers (herein referred to as teachers) in the Colleges of Education in South Eastern Nigeria. The survey design was employed. 35 teachers were selected by stratified random sampling from about 78 chemistry teachers in these Colleges. However, 34 questionnaires were recovered, comprising 13 males and 21 females. 3 research questions and 3 hypotheses guided the study. Results show that the teachers have a clear perception of the factors militating against the use of ICT in the teaching and learning of chemistry, with a pooled mean of 2.96. But there was no significant difference in the perceptions of male and female teachers. Also, they identified the mitigating factors highlighted with no significant difference between the perceptions of the males and females with pooled means of 3.23 and 3.11, respectively. In all, it is noteworthy that lack of funds, irregular and inadequate power supply, and inadequate time in the school timetable was among the militating factors. Recommendations were made for the consideration of the government, the teachers, and the Institutions.

Keywords: chemistry, teachers, perception, ICT, learning

Procedia PDF Downloads 93