Search results for: single inductor multi output (SIMO)
6351 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 476350 Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites
Authors: Nur Suraya Anis Ahmad Bakhtiar, Hazizan Md Akil
Abstract:
In the present work, the dielectric properties of Epoxy/MWCNTs-muscovite HYBRID and MIXED composites based on ratio 30:70 were studies. The multi-wall carbon nanotubes (MWCNTs) were prepared by two method; (a) muscovite-MWCNTs hybrids were synthesized by chemical vapor deposition (CVD) and (b) physically mixing of muscovite with MWCNTs. The effect of different preparations of the composites and filler loading was evaluated. It is revealed that the dielectric constants of HYBRID epoxy composites are slightly higher compared to MIXED epoxy composites. It is also indicated that the dielectric constant increased by increases the MWCNTs filler loading.Keywords: muscovite, epoxy, dielectric properties, hybrid composite
Procedia PDF Downloads 6526349 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia
Authors: Hanna Mamo Ergando
Abstract:
Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities
Procedia PDF Downloads 2296348 On the Optimization of a Decentralized Photovoltaic System
Authors: Zaouche Khelil, Talha Abdelaziz, Berkouk El Madjid
Abstract:
In this paper, we present a grid-tied photovoltaic system. The studied topology is structured around a seven-level inverter, supplying a non-linear load. A three-stage step-up DC/DC converter ensures DC-link balancing. The presented system allows the extraction of all the available photovoltaic power. This extracted energy feeds the local load; the surplus energy is injected into the electrical network. During poor weather conditions, where the photovoltaic panels cannot meet the energy needs of the load, the missing power is supplied by the electrical network. At the common connexion point, the network current shows excellent spectral performances.Keywords: seven-level inverter, multi-level DC/DC converter, photovoltaic, non-linear load
Procedia PDF Downloads 1966347 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan
Authors: Ahtesham Javaid, Costin S. Bildea
Abstract:
The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.Keywords: dehydrogenation and hydrogenation, reaction coupling, design and control, process integration
Procedia PDF Downloads 3416346 AGEs-Aggravating Renal Lesions in C57BL/6J Mice, STZ-Induced Diabetes Nephropathy Model
Authors: Xing Lv, Hui-Qin Xu
Abstract:
The present study aimed to reveal the mechanism in aggravating STZ induced diabetic nephropathy (DN) by AGEs (advanced glycation end products). At the eighth day, 20 diabetic mice were randomly divided into STZ group and combination (combine AGEs with STZ) group. Simultaneously, AGEs group and normal group were set. Only mice in AGEs group, combination group were fed with high-AGEs diets. Mice diabetic conventional indicators, biochemical analysis were measured. Among the indictors, food consumptions, water intake, urine output, blood glucose, urine protein, urine creatinine, serum urea nitrogen were increased significantly in STZ, combination groups. The AGEs levels in combination group increased significantly when compared with STZ group. Weights and insulin levels in the STZ, combination groups were decreased significantly when compared with normal group, and the difference was significantly between AGEs group and STZ group. As a conclusion, AGEs play an important role in the DN development, inducing kidney damages.Keywords: AGEs, diabetic nephropathy, serum urea nitrogen, urine protein
Procedia PDF Downloads 4456345 Recent Trends in Supply Chain Delivery Models
Authors: Alfred L. Guiffrida
Abstract:
A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.Keywords: delivery performance, delivery window, supply chain delivery models, supply chain performance
Procedia PDF Downloads 4246344 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3426343 Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf
Authors: Farzingohar Mehrnaz, Yasemi Mehran, Esmaili Zinat, Baharlouian Maedeh
Abstract:
Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods.Keywords: ADIOS, modeling, oil spill, sensitivity analysis
Procedia PDF Downloads 3036342 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)
Authors: Anil Kawan, Soon Jae Yu, Jong Min Park
Abstract:
GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet
Procedia PDF Downloads 4286341 The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations
Authors: Hassan Mahdi
Abstract:
The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools.Keywords: machine translation, computer-assisted translation, collocations, technology
Procedia PDF Downloads 1956340 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach
Authors: Mohamed Nasraoui
Abstract:
Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.
Procedia PDF Downloads 1696339 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates
Authors: Yi Li, Rui Lu, Lianjun Wang
Abstract:
With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs
Procedia PDF Downloads 1636338 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process
Authors: Ayat-Allah Bouramdane
Abstract:
Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability
Procedia PDF Downloads 1626337 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1216336 Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications
Authors: Pedro Acevedo, Carlos Díaz, Mónica Vázquez, Joel Durán
Abstract:
This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used.Keywords: PSoC, pulse generator, PVDF, ultrasonic transducer
Procedia PDF Downloads 2976335 Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition
Authors: Wilson Enríquez, Daniel Cardenas
Abstract:
This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No).Keywords: multi-carrier system (5G), filter bank, polyphase decomposition, FIR equalizer
Procedia PDF Downloads 2076334 Analytical Study of CPU Scheduling Algorithms
Authors: Keshav Rathi, Aakriti Sharma, Vinayak R. Dinesh, Irfan Ramzan Parray
Abstract:
Scheduling is a basic operating system function since practically all computer resources are scheduled before use. The CPU is one of the most important computer resources. Central Processing Unit (CPU) scheduling is vital because it allows the CPU to transition between processes. A processor is the most significant resource in a computer; the operating system can increase the computer's productivity. The objective of the operating system is to allow as many processes as possible to operate at the same time in order to maximize CPU utilization. The highly efficient CPU scheduler is based on the invention of high-quality scheduling algorithms that meet the scheduling objectives. In this paper, we reviewed various fundamental CPU scheduling algorithms for a single CPU and showed which algorithm is best for the particular situation.Keywords: computer science, Operating system, CPU scheduling, cpu algorithms
Procedia PDF Downloads 186333 Promoting the Contructor's Reputation in the Nigerian Construction Industry
Authors: Abdulkadir Adamu Shehu
Abstract:
Company’s reputation is an elusive asset. The reputation gained by companies must be preserved for sustainability of the company. However, the construction project is still suffering from declination of character due to the factors that affect their reputation. The problem led to the loss of projects, abandoning of the projects and many more. This contributed to negative impact on the contractors in the construction industry. As for today, previous studies have not investigated in this regards yet. For that reason, this paper examines the factors which could promote contractor’s reputation in the construction industry in Nigeria. To achieve this aim, 140 questionnaires were distributed to the Nigerian contractors. Based on the 67% response rate, descriptive analysis and analysis of variance (ANOVA) were the tools applied for the data obtained to be analysed. The result shows that, good communication system and improve quality of output of products are the most significant variables that can promote contractor’s reputation. The homogenous analyses indicate that there are significant different perceptions of respondents in term of the significant effects. The research concluded that contractor’s reputation in construction industry must be maintained and further research was suggested to focus on the qualitative method to have in-depth knowledge on contractor’s reputation in the construction industry.Keywords: construction industry, contractor’s reputation, effects of delay, Nigeria
Procedia PDF Downloads 4376332 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation
Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita
Abstract:
In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during changes in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain equal power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.Keywords: droop control, droop characteristic, grid-connected inverter, microgrid, power control
Procedia PDF Downloads 8896331 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5526330 Automated CNC Part Programming and Process Planning for Turned Components
Authors: Radhey Sham Rajoria
Abstract:
Pressure to increase the competitiveness in the manufacturing sector and for the survival in the market has led to the development of machining centres, which enhance productivity, improve quality, shorten the lead time, and reduce the manufacturing cost. With the innovation of machining centres in the manufacturing sector the production lines have been replaced by these machining centers, having the ability to machine various processes and multiple tooling with automatic tool changer (ATC) for the same part. Also the process plans can be easily generated for complex components. Some means are required to utilize the machining center at its best. The present work is concentrated on the automated part program generation, and in turn automated process plan generation for the turned components on Denford “MIRAC” 8 stations ATC lathe machining centre. A package in C++ on DOS platform is developed which generates the complete CNC part program, process plan and process sequence for the turned components. The input to this system is in the form of a blueprint in graphical format with machining parameters and variables, and the output is the CNC part program which is stored in a .mir file, ready for execution on the machining centre.Keywords: CNC, MIRAC, ATC, process planning
Procedia PDF Downloads 2716329 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C
Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner
Abstract:
Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applicationsKeywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity
Procedia PDF Downloads 866328 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1536327 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey
Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar
Abstract:
5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.Keywords: 5G, 5th generation, innovation, standard, wireless communication
Procedia PDF Downloads 4476326 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: adhesive joints, CFRP, VARTM, resin transfer molding
Procedia PDF Downloads 4386325 A Two Phase VNS Algorithm for the Combined Production Routing Problem
Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub
Abstract:
Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literatureKeywords: logistic, production, distribution, variable neighbourhood search
Procedia PDF Downloads 3406324 Nutritional Status of Food Insecure Students, UWC
Authors: E. C. Swart, E. Kunneke
Abstract:
Background: Disparities in food security exist between communities and households across the country, reflecting continuing social and economic inequalities. The purpose of this study was to investigate the presence of food insecurity amongst UWC students. Method: Cross-sectional study recruited 200 students via email and cellphone from an ICS generated list of randomly selected students aged 18-25. Data collection took place during the first two weeks of term 3. Individual appointments were made with consenting participants and conducted in English by trained BSc Dietetics students. Data was analysed using SPSS. The hunger scale used by Stats SA (October 2010) was used. Dietary intake was assessed using a single 24hr recall. Results: Sixty-three percent of the students reported that they do experience some food insecurity whilst 14.5% reported to go hungry due to inadequate access to food. Coping mechanisms during periods of food insecurity include: Asking a friend, neighbour, family member (40%); Borrow (15%); Steal (none); Casual jobs (12%). Anthropometric status of students did not differ statistically significantly by food security status. A statistically significantly greater proportion of Xhosa speaking students reported inadequate money for food. Students residing in residences off campus appear to be least food secure in terms of money available and limiting food intake, whilst those residing at home are less food insecure. Similar proportions of students who receive bursaries or whose parents are paying reported going hungry whilst those who supports themselves never goes hungry. Mean nutrient intake during the previous 24 hours of students who reported inadequate resources to buy food, who eat less due to inadequate resources and who goes hungry only differed statistically significantly for Vitamin B (go hungry) and for fibre (money shortage). In general the nutrient intake is lower for those who reported to eat less and go hungry except for added sugar, vitamin A and folate (go hungry), and energy, fibre, iron, riboflavin and folate (eat less). For students who reported to have inadequate money to buy food, the mean nutrient intake was higher except for calcium and thiamin. The mean body mass index of this group of students was also higher even though the difference was not statistically significant. Conclusion: Hunger is present on campus however a single 24hr recall did not confirm statistically significant lower nutrient intakes for students who reported different levels of food insecurity.Keywords: anthropometry, dietary intake, nutritional status, students
Procedia PDF Downloads 3766323 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1236322 Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.Keywords: clinoptilolite, loading, modeling, neural network
Procedia PDF Downloads 418