Search results for: optimization procedure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5322

Search results for: optimization procedure

1692 Challenges and Opportunities for Implementing Integrated Project Delivery Method in Public Sector Construction

Authors: Ahsan Ahmed, Ming Lu, Syed Zaidi, Farhan Khan

Abstract:

The Integrated Project Delivery (IPD) method has been proposed as the solution to tackle complexity and fragmentation in the real world while addressing the construction industry’s growing needs for productivity and sustainability. Although the private sector has taken the initiative in implementing IPD and taken advantage of new technology such as building information modeling (BIM) in delivering projects, IPD remains less known and rarely used in public sector construction. The focus of this paper is set on the use of IPD in projects in public sector, which is potentially complemented by the use of analytical functionalities for workface planning and construction oriented design enabled by recent research advances in BIM. Experiences and lessons learned from implementing IPD in the private sector and in BIM-based construction automation research would play a vital role in reducing barriers and eliminating issues in connection with project delivery in the public sector. The paper elaborates issues challenges, contractual relationships and the interactions throughout the planning, design and construction phases in the context of implementing IPD on construction projects in the public sector. A slab construction case is used as a ‘sandbox’ model to elaborate (1) the ideal way of communication, integration, and collaboration among all the parties involved in project delivery in planning and (2) the execution of projects by using IDP principles and optimization, simulation analyses.

Keywords: integrated project delivery, IPD, building information modeling, BIM

Procedia PDF Downloads 201
1691 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 452
1690 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 219
1689 Geophysical and Laboratory Evaluation of Aquifer Position, Aquifer Protective Capacity and Groundwater Quality in Selected Dumpsites in Calabar Municipal Local Government Area, South Eastern Nigeria

Authors: Egor Atan Obeten, Abong Augustine Agwul, Bissong A. Samson

Abstract:

The position of the aquifer, its protective capability, and the quality of the groundwater beneath the dumpsite were all investigated. The techniques employed were laboratory, tritium tagging, electrical resistivity tomography (ERT), and vertical electrical sounding (VES). With a maximum electrode spacing of 500 meters, fifteen VES stations were used, and IPI2win software was used to analyze the data collected. The resistivity map of the dumpsite was determined by deploying six ERT stations for the 2 D survey. To ascertain the degree of soil infiltration beneath the dumpsite, the tritium tagging method was used. Using a conventional laboratory procedure, groundwater samples were taken from neighboring boreholes and examined. The findings showed that there were three to five geoelectric layers, with the aquifer position being inferred to be between 24.2 and 75.1 meters deep in the third, fourth, and fifth levels. Siemens with values in the range of 0.0235 to 0.1908 for the load protection capacity were deemed to be, at most, weakly and badly protected. The obtained porosity values ranged from 44.45 to 89.75. Strong calculated values for transmissivity and porosity indicate a permeable aquifer system with considerable storativity. The area has an infiltration value between 8 and 22 percent, according to the results of the tritium tagging technique, which was used to evaluate the level of infiltration from the dumpsite. Groundwater samples that have been analyzed reveal levels of NO2, DO, Pb2+, magnesium, and cadmium that are higher than what the NSDWQ has approved. Overall analysis of the results from the above-described methodologies shows that the study area's aquifer system is porous and that contaminants will circulate through it quickly if they are contaminated.

Keywords: aquifer, transmissivity, dumpsite, groundwater

Procedia PDF Downloads 46
1688 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 130
1687 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.

Keywords: blast furnace, optimization, silicon, statistical tools

Procedia PDF Downloads 221
1686 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 80
1685 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge

Authors: Fawwaz Eniola Fajingbesi, Nur Shahida Midia, Elsheikh M. A. Elsheikh, Siti Hajar Yusoff

Abstract:

Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results.

Keywords: current distribution, grounding systems, lightning discharge, numerical model, soil conductivity, soil ionization

Procedia PDF Downloads 311
1684 Optimization and Automation of Functional Testing with White-Box Testing Method

Authors: Reyhaneh Soltanshah, Hamid R. Zarandi

Abstract:

In order to be more efficient in industries that are related to computer systems, software testing is necessary despite spending time and money. In the embedded system software test, complete knowledge of the embedded system architecture is necessary to avoid significant costs and damages. Software tests increase the price of the final product. The aim of this article is to provide a method to reduce time and cost in tests based on program structure. First, a complete review of eleven white box test methods based on ISO/IEC/IEEE 29119 2015 and 2021 versions has been done. The proposed algorithm is designed using two versions of the 29119 standards, and some white-box testing methods that are expensive or have little coverage have been removed. On each of the functions, white box test methods were applied according to the 29119 standard and then the proposed algorithm was implemented on the functions. To speed up the implementation of the proposed method, the Unity framework has been used with some changes. Unity framework can be used in embedded software testing due to its open source and ability to implement white box test methods. The test items obtained from these two approaches were evaluated using a mathematical ratio, which in various software mining reduced between 50% and 80% of the test cost and reached the desired result with the minimum number of test items.

Keywords: embedded software, reduce costs, software testing, white-box testing

Procedia PDF Downloads 53
1683 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller

Procedia PDF Downloads 414
1682 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 210
1681 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor

Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh

Abstract:

Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.

Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging

Procedia PDF Downloads 258
1680 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 80
1679 Oxidative Stress Markers in Sports Related to Training

Authors: V. Antevska, B. Dejanova, L. Todorovska, J. Pluncevic, E. Sivevska, S. Petrovska, S. Mancevska, I. Karagjozova

Abstract:

Introduction: The aim of this study was to optimise the laboratory oxidative stress (OS) markers in soccer players. Material and methods: In a number of 37 soccer players (21±3 years old) and 25 control subjects (sedenters), plasma samples were taken for d-ROMs (reactive oxygen metabolites) and NO (nitric oxide) determination. The d-ROMs test was performed by measurement of hydroperoxide levels (Diacron, Italy). For NO determination the method of nitrate enzyme reduction with the Greiss reagent was used (OXIS, USA). The parameters were taken after the training of the soccer players and were compared with the control group. Training was considered as maximal exercise treadmill test. The criteria of maximum loading for each subject was established as >95% maximal heart rate. Results: The level of d-ROMs was found to be increased in the soccer players vs. control group but no significant difference was noticed. After the training d-ROMs in soccer players showed increased value of 299±44 UCarr (p<0.05). NO showed increased level in all soccer players vs. controls but significant difference was found after the training 102±29 μmol (p<0.05). Conclusion: Due to these results we may suggest that the measuring these OS markers in sport medicine may be useful for better estimation and evaluation of the training program. More oxidative stress should be used to clarify optimization of the training intensity program.

Keywords: oxidative stress markers, soccer players, training, sport

Procedia PDF Downloads 446
1678 External Vacuum Dressing: Optimising Non-Operative Management of Flail Sternum Post CPR

Authors: Nicholas Bayfield, Mark Newman

Abstract:

Case Presentation: A 48-year-old male was brought in by ambulance after an out-of-hospital cardiac arrest, with 20 minutes of good-quality cardiopulmonary resuscitation in the community. Return of spontaneous circulation was achieved with defibrillation, revealing an inferior ST-elevation myocardial infarction. He was revascularized emergently in the cath lab and stabilised. Following the procedure, he was noted to have paradoxical respiratory movements of the sternum and high oxygen requirements. CT imaging demonstrated a flail chest with bilateral anterior rib 1-7 fractures as well as a large left-sided extra-pleural haematoma and small haemopneumothorax, secondary to CPR. The patient’s ventilation was stabilised with oxygen via a high-flow humidifier. Pain relief was provided. The anatomy of his rib fractures was not easily amenable to operative fixation. In addition, he was considered to be a high-risk operative candidate due to his recent arrest. He was managed thus non-operatively with an external vacuum dressing applied to the anterior chest wall to minimise respiratory compromise and minimise pain from the motion around the rib fracture sites. Non-operative management was successful, and the patient was reviewed one month later. The paradoxical sternal movement had abated. Discussion: External vacuum dressing has been trialled for non-operative management of rib fractures with varying success. It provides an external brace to minimise fracture site movement during respiration and coughing, thus minimising pain. This modality should be considered a low-cost, high-reward adjunct to non-operative management of bony thoracic trauma.

Keywords: thoracic surgery, thoracic trauma, rib fractures, negative pressure dressing

Procedia PDF Downloads 153
1677 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 166
1676 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 200
1675 The Value of Routine Terminal Ileal Biopsies for the Investigation of Diarrhea

Authors: Swati Bhasin, Ali Ahmed, Valence Xavier, Ben Liu

Abstract:

Aims: Diarrhea is a problem that is a frequent clinic referral to the gastroenterology and surgical team from the General practitioner. To establish a diagnosis, these patients undergo colonoscopy. The current practice at our district general hospital is to perform random left and right colonic biopsies. National guidelines issued by the British Society of Gastroenterology advise all patients presenting with chronic diarrhea should have an Ileoscopy as an indicator for colonoscopy completion. Our primary aim was to check if Terminal ileum (TI) biopsy is required to establish a diagnosis of inflammatory bowel disease (IBD). Methods: Data was collected retrospectively from November 2018 to November 2019. The target population were patients who underwent colonoscopies for diarrhea. Demographic data, endoscopic and histology findings of TI were assessed and analyzed. Results: 140 patients with a mean age of 57 years (19-84) underwent a colonoscopy (M: F; 1:2.3). 92 patients had random colonic biopsies taken and based on the histological results of these, 15 patients (16%) were diagnosed with IBD. The TI was successfully intubated in 40 patients, of which 32 patients had colonic biopsies taken as well. 8 patients did not have a colonic biopsy taken. Macroscopic abnormality in the TI was detected in 5 patients, all of whom were biopsied. Based on histological results of the biopsy, 3 patients (12%) were diagnosed with IBD. These 3 patients (100%) also had colonic biopsies taken simultaneously and showed inflammation. None of the patients had a diagnosis of IBD confirmed on TI intubation alone (where colonic biopsies were not done). None of the patients has a diagnosis of IBD confirmed on TI intubation alone (where colonic biopsies were negative). Conclusion: TI intubation is a highly-skilled, time-consuming procedure with a higher risk of perforation, which as per our study, has little additional diagnostic value in finding IBD for symptoms of diarrhea if colonic biopsies are taken. We propose that diarrhea is a colonic symptom; therefore, colonic biopsies are positive for inflammation if the diarrhea is secondary to IBD. We conclude that all of the IBDs can be diagnosed simply with colonic biopsies.

Keywords: biopsy, colon, IBD, terminal ileum

Procedia PDF Downloads 122
1674 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 351
1673 Development of Dye Sensitized Solar Window by Physical Parameters Optimization

Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam

Abstract:

Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.

Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency

Procedia PDF Downloads 140
1672 Rethinking the Use of Online Dispute Resolution in Resolving Cross-Border Small E-Disputes in EU

Authors: Sajedeh Salehi, Marco Giacalone

Abstract:

This paper examines the role of existing online dispute resolution (ODR) mechanisms and their effects on ameliorating access to justice – as a protected right by Art. 47 of the EU Charter of Fundamental Rights – for consumers in EU. The major focus of this study will be on evaluating ODR as the means of dispute resolution for Business-to-Consumer (B2C) cross-border small claims raised in e-commerce transactions. The authors will elaborate the consequences of implementing ODR methods in the context of recent developments in EU regulatory safeguards on promoting consumer protection. In this analysis, both non-judiciary and judiciary ODR redress mechanisms are considered, however, the significant consideration is given to – obligatory and non-obligatory – judiciary ODR methods. For that purpose, this paper will particularly investigate the impact of the EU ODR platform as well as the European Small Claims Procedure (ESCP) Regulation 861/2007 and their role on accelerating the access to justice for consumers in B2C e-disputes. Although, considerable volume of research has been carried out on ODR for consumer claims, rather less (or no-) attention has been paid to provide a combined doctrinal and empirical evaluation of ODR’s potential in resolving cross-border small e-disputes, in EU. Hence, the methodological approach taken in this study is a mixed methodology based on qualitative (interviews) and quantitative (surveys) research methods which will be mainly based on the data acquired through the findings of the Small Claims Analysis Net (SCAN) project. This project contributes towards examining the ESCP Regulation implementation and efficiency in providing consumers with a legal watershed through using the ODR for their transnational small claims. The outcomes of this research may benefit both academia and policymakers at national and international level.

Keywords: access to justice, consumers, e-commerce, small e-Disputes

Procedia PDF Downloads 127
1671 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 107
1670 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics

Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta

Abstract:

The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.

Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology

Procedia PDF Downloads 133
1669 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement

Authors: Hu Zhenxing, Gao Jianxin

Abstract:

Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.

Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D

Procedia PDF Downloads 495
1668 Design and Validation of a Darrieus Type Hydrokinetic Turbine for South African Irrigation Canals Experimentally and Computationally

Authors: Maritz Lourens Van Rensburg, Chantel Niebuhr

Abstract:

Utilizing all available renewable energy sources is an ever-growing necessity, this includes a newfound interest into hydrokinetic energy systems, which open the door to installations where conventional hydropower shows no potential. Optimization and obtaining high efficiencies are key in these installations. In this study a vertical axis Darrieus hydrokinetic turbine is designed and constructed to address certain drawbacks experience by axial flow horizontal axis turbines in an irrigation channel. Many horizontal axis turbines have been well developed and optimized to have high efficiencies but depending on the conditions experienced in an open channel, the performance of these turbines may be adversely affected. The study analyses how the designed vertical axis turbine addresses the problems experienced by a horizontal axis turbine while still achieving a satisfactory efficiency. To be able to optimize the vertical axis turbine, a computational fluid dynamics model was validated to the experimental results obtained from the power generated from a test turbine installation operating at various rotational speeds. It was found that an accurate validated model can be obtained through validation of generated power output.

Keywords: hydrokinetic, Darrieus, computational fluid dynamics, vertical axis turbine

Procedia PDF Downloads 115
1667 Optimal Location of Unified Power Flow Controller (UPFC) for Transient Stability: Improvement Using Genetic Algorithm (GA)

Authors: Basheer Idrees Balarabe, Aminu Hamisu Kura, Nabila Shehu

Abstract:

As the power demand rapidly increases, the generation and transmission systems are affected because of inadequate resources, environmental restrictions and other losses. The role of transient stability control in maintaining the steady-state operation in the occurrence of large disturbance and fault is to describe the ability of the power system to survive serious contingency in time. The application of a Unified power flow controller (UPFC) plays a vital role in controlling the active and reactive power flows in a transmission line. In this research, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a power system network for the enhancement of the power-system Transient Stability. Optimal location of UPFC has Significantly Improved the transient stability, the damping oscillation and reduced the peak over shoot. The GA optimization Technique proposed was iteratively searches the optimal location of UPFC and maintains the unusual bus voltages within the satisfy limits. The result indicated that transient stability is improved and achieved the faster steady state. Simulations were performed on the IEEE 14 Bus test systems using the MATLAB/Simulink platform.

Keywords: UPFC, transient stability, GA, IEEE, MATLAB and SIMULINK

Procedia PDF Downloads 11
1666 Assessing and Identifying Factors Affecting Customers Satisfaction of Commercial Bank of Ethiopia: The Case of West Shoa Zone (Bako, Gedo, Ambo, Ginchi and Holeta), Ethiopia

Authors: Habte Tadesse Likassa, Bacha Edosa

Abstract:

Customer’s satisfaction was very important thing that is required for the existence of banks to be more productive and success in any organization and business area. The main goal of the study is assessing and identifying factors that influence customer’s satisfaction in West Shoa Zone of Commercial Bank of Ethiopia (Holeta, Ginchi, Ambo, Gedo and Bako). Stratified random sampling procedure was used in the study and by using simple random sampling (lottery method) 520 customers were drawn from the target population. By using Probability Proportional Size Techniques sample size for each branch of banks were allocated. Both descriptive and inferential statistics methods were used in the study. A binary logistic regression model was fitted to see the significance of factors affecting customer’s satisfaction in this study. SPSS statistical package was used for data analysis. The result of the study reveals that the overall level of customer’s satisfaction in the study area is low (38.85%) as compared those who were not satisfied (61.15%). The result of study showed that all most all factors included in the study were significantly associated with customer’s satisfaction. Therefore, it can be concluded that based on the comparison of branches on their customers satisfaction by using odd ratio customers who were using Ambo and Bako are less satisfied as compared to customers who were in Holeta branch. Additionally, customers who were in Ginchi and Gedo were more satisfied than that of customers who were in Holeta. Since the level of customers satisfaction was low in the study area, it is more advisable and recommended for concerned body works cooperatively more in maximizing satisfaction of their customers.

Keywords: customers, satisfaction, binary logistic, complain handling process, waiting time

Procedia PDF Downloads 463
1665 Back Extraction and Isolation of Alkaloids from Ionic Liquid-Based Extracts

Authors: Rozalina Keremedchieva, Ivan Svinyarov, Milen G. Bogdanov

Abstract:

In continuation of a research project on the application of ionic liquids (ILs) as an alternative to the conventional organic solvents used in the recovery of value added chemicals of industrial interest1-3 we developed a procedure for back extraction and isolation in pure form of the biologically active alkaloid glaucine from IL-based aqueous solutions. One of the approaches applied was the formation of two-phase systems (IL-ATPS) by the addition of kosmotropic salts to the plant extract. The ability of the salts (Na2CO3, MgSO4, (NH4)2SO4, NaH2PO4) to induce the formation of two-phase systems and the influence of pH value on the partition coefficients of glaucine was comprehensively studied. As a result, it was found that the target alkaloid is preferably partitioned into the IL-rich phase regardless of the pH value of the medium and thus shows the inapplicability of the approach used for the isolation of the target compound from the ionic liquid. However, the results obtained can be used as a platform for the development of an analytical method for the quantitative determination of low concentrations of glaucine in biological samples. We further examined the ability of a series of organic solvents such as diethyl ether, Tert-butylmethyl ether, ethyl acetate, butyl acetate, toluene, chloroform, dichloromethane to recover glaucine form raw IL-based aqueous extracts. Optimal conditions for quantitative extraction of glaucine into chloroform were found from which, after removal of the solvent and subsequent recrystallization from ethanol, the target compound was isolated in a high purity as a hydrobromide salt – The form in which it entrance as an active ingredient in various medicines.

Keywords: natural products, ionic liquids, solid-liquid extraction, liquid-liquid extraction

Procedia PDF Downloads 476
1664 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 278
1663 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.

Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann

Procedia PDF Downloads 61