Search results for: distribution network reconfiguration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9423

Search results for: distribution network reconfiguration

5793 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner

Authors: Sewon Kim, Changyeop Lee

Abstract:

A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.

Keywords: burner, low NOx, liquid fuel, partial oxidation

Procedia PDF Downloads 345
5792 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 357
5791 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them. A detailed review of each of the list of papers selected for the study is included in section III of this document. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs), as summarized in Table 1, are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The prevailing challenges of the different architectures are discussed and summarized in Table 3 of the IV section, where the main problem is the obstruction of communication paths by buildings, trees, hills, etc.

Keywords: communication technologies, environmental monitoring, Internet of Things, IoT deployment challenges

Procedia PDF Downloads 91
5790 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 94
5789 Cataloguing Beetle Fauna (Insecta: Coleoptera) of India: Estimating Diversity, Distribution, and Taxonomic Challenges

Authors: Devanshu Gupta, Kailash Chandra, Priyanka Das, Joyjit Ghosh

Abstract:

Beetles, in the insect order Coleoptera are the most species-rich group on this planet today. They represent about 40% of the total insect diversity of the world. With a considerable range of landform types including significant mountain ranges, deserts, fertile irrigational plains, and hilly forested areas, India is one of the mega-diverse countries and includes more than 0.1 million faunal species. Despite having rich biodiversity, the efforts to catalogue the beetle diversity of the extant species/taxa reported from India have been less. Therefore, in this paper, the information on the beetle fauna of India is provided based on the data available with the museum collections of Zoological Survey of India and taxa extracted from zoological records and published literature. The species were listed with their valid names, synonyms, type localities, type depositories, and their distribution in states and biogeographic zones of India. The catalogue also incorporates the bibliography on Indian Coleoptera. The exhaustive species inventory, prepared by us include distributional records from Himalaya, Trans Himalaya, Desert, Semi-Arid, Western Ghats, Deccan Peninsula, Gangetic Plains, Northeast, Islands, and Coastal areas of the country. Our study concludes that many of the species are still known from their type localities only, so there is need to revisit and resurvey those collection localities for the taxonomic evaluation of those species. There are species which exhibit single locality records, and taxa-specific biodiversity assessments are required to be undertaken to understand the distributional range of such species. The primary challenge is taxonomic identifications of the species which were described before independence, and the type materials are present in overseas museums. For such species, taxonomic revisions of the different group of beetles are required to solve the problems of identification and classification.

Keywords: checklist, taxonomy, museum collections, biogeographic zones

Procedia PDF Downloads 281
5788 Research and Development of Net-Centric Information Sharing Platform

Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong

Abstract:

Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.

Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control

Procedia PDF Downloads 575
5787 Metal Extraction into Ionic Liquids and Hydrophobic Deep Eutectic Mixtures

Authors: E. E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M. F. Volia, C. M. Folden III

Abstract:

Room temperature ionic liquids (RTILs) are a class of liquid organic salts with melting points below 20 °C that are considered to be environmentally friendly ‘designers’ solvents. Pure hydrophobic ILs are known to extract metallic species from aqueous solutions. The closest analogues of ionic liquids are deep eutectic solvents (DESs), which are a eutectic mixture of at least two compounds with a melting point lower than that of each individual component. DESs are acknowledged to be attractive for organic synthesis and metal processing. Thus, these non-volatile and less toxic compounds are of interest for critical metal extraction. The US Department of Energy and the European Commission consider indium as a key metal. Its chemical homologue, thallium, is also an important material for some applications and environmental safety. The aim of this work is to systematically investigate In and Tl extraction from aqueous solutions into pure fluorinated ILs and hydrophobic DESs. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. The extraction efficiency of the TlXz3–z anionic species (where X = Cl– and/or Br–) is greater for ionic liquids with more hydrophobic cations. Unexpectedly high distribution ratios (> 103) of Tl(III) were determined even by applying a pure ionic liquid as receiving phase. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the co-extraction of two different anionic species, and the relative contributions of each mechanism have been determined. The first evidence of indium extraction into new quaternary ammonium- and menthol-based hydrophobic DESs from hydrochloric and oxalic acid solutions with distribution ratios up to 103 will be provided. Data obtained allow us to interpret the mechanism of thallium and indium extraction into ILs and DESs media. The understanding of Tl and In chemical behavior in these new media is imperative for the further improvement of separation and purification of these elements.

Keywords: deep eutectic solvents, indium, ionic liquids, thallium

Procedia PDF Downloads 243
5786 20th-Century River Course Changes and Their Relation to Sediment Carbon Distribution Patterns in the Yellow River Delta

Authors: Dongxue Li, Zhonghua Ning, Yi’na Li, Baoshan Cui, Wasner Daniel, Sebastian Dötterl

Abstract:

Most of the world's coastal alluvial plains can be significant carbon (C) eservoirs in which upland sediments are deposited and bury former topsoil, thereby contributing to soil C preservation, especially in river-controlled deltas like the Yellow River Delta, China. These deltas are affected by the continuous large amount of sediment transport and strong river dynamics from the upper reaches, which makes the river course in the deltas change frequently. However, the impact of varying river course changes on C stocks in these estuary wetlands is unclear. To investigate this, we drilled five 2 m cores along a sediment deposition sequence of the Yellow River Delta, which shifted its main course flow in the delta several times throughout the 20th century. Covering 80 years of sediment deposition, we explored both soil C stocks and their potential sources, and identified key soil physicochemical and hydrometeorological variables that correlate to C density and deposition rate. Further, the spatiotemporal C distribution and its relationship with these variables was examined. Our results showed that sediments at a soil depth of 200 cm in the main courses of the Yellow River corresponded to deposition ages ranging from 1942 to 1989. The oldest course has the lowest C stocks and showed C-enriched compared with younger courses. Contributions of soil C stemming from fresh particulate organic carbon from deposited upstream sources were significantly higher than local, in-situ vegetation. In addition, the carbon of the oldest and relatively young courses tends to be affected by interaction effects of hydrometeorological and physiochemical varibales, and that of the middle courses tends to be affected by independent variables. Our findings can help prioritize conservation efforts across different river courses and provide quantitative support for global carbon emission reduction by assessing sediment carbon reservoirs.

Keywords: alluvial plains, coastal wetland, core drilling, course diversion, organic carbon, sediment deposition rate, soil deposition

Procedia PDF Downloads 35
5785 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 419
5784 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 20
5783 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 481
5782 Random Variation of Treated Volumes in Fractionated 2D Image Based HDR Brachytherapy for Cervical Cancer

Authors: R. Tudugala, B. M. A. I. Balasooriya, W. M. Ediri Arachchi, R. W. M. W. K. Rathnayake, T. D. Premaratna

Abstract:

Brachytherapy involves placing a source of radiation near the cancer site which gives promising prognosis for cervical cancer treatments. The purpose of this study was to evaluate the effect of random variation of treated volumes in between fractions in the 2D image based fractionated high dose rate brachytherapy for cervical cancer at National Cancer Institute Maharagama, Sri Lanka. Dose plans were analyzed for 150 cervical cancer patients with orthogonal radiographs (2D) based brachytherapy. ICRU treated volumes was modeled by translating the applicators with the help of “Multisource HDR plus software”. The difference of treated volumes with respect to the applicator geometry was analyzed by using SPSS 18 software; to derived patient population based estimates of delivered treated volumes relative to ideally treated volumes. Packing was evaluated according to bladder dose, rectum dose and geometry of the dose distribution by three consultant radiation oncologist. The difference of treated volumes depends on types of the applicators, which was used in fractionated brachytherapy. The means of the “Difference of Treated Volume” (DTV) for “Evenly activated tandem (ET)” length” group was ((X_1)) -0.48 cm3 and ((X_2)) 11.85 cm3 for “Unevenly activated tandem length (UET) group. The range of the DTV for ET group was 35.80 cm3 whereas UET group 104.80 cm3. One sample T test was performed to compare the DTV with “Ideal treatment volume difference (0.00cm3)”. It is evident that P value was 0.732 for ET group and for UET it was 0.00 moreover independent two sample T test was performed to compare ET and UET groups and calculated P value was 0.005. Packing was evaluated under three categories 59.38% used “Convenient Packing Technique”, 33.33% used “Fairly Packing Technique” and 7.29% used “Not Convenient Packing” in their fractionated brachytherapy treatments. Random variation of treated volume in ET group is much lower than UET group and there is a significant difference (p<0.05) in between ET and UET groups which affects the dose distribution of the treatment. Furthermore, it can be concluded nearly 92.71% patient’s packing were used acceptable packing technique at NCIM, Sri Lanka.

Keywords: brachytherapy, cervical cancer, high dose rate, tandem, treated volumes

Procedia PDF Downloads 204
5781 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 93
5780 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 29
5779 Diversity and Distribution of Cytochrome P450 2C9 Genes Related with Medical Cannabis in Thai Patients

Authors: Tanakrit Doltanakarn

Abstract:

Introduction: These days, cannabis is being accepted in many countries due to the fact that cannabis could be use in medical. The medical cannabis is used to treat and reduce the pain many diseases. For example, neuropathic pain, Parkinson, autism disorders, cancer pain reduce the adverse effect of chemotherapy, diabetes, and migraine. Active ingredients in cannabis that modulate patients' perceptions of their conditions include Δ9‐tetrahydrocannabinol (THC), cannabidiol (CBD), flavonoids, and terpenes. However, there is an adverse effect of cannabis, cardiovascular effects, psychosis, schizophrenia, mood disorder, and cognitive alternation. These effects are from the THC and CBD ingredients in the cannabis. The metabolize processes of delta-9 THC to 11-OH-delta 9 -THC (inactive form), THC were cause of adverse effects. Interestingly, the distributions of CYP2C9 gene (CYP2C9*2 and CYP2C9*3, poor metabolizer) that might affect incidences of adverse effects in patients who treated with medical cannabis. Objective: The aim of this study we want to investigate the association between genetic polymorphism of CYP2C9 frequency and Thai patients who treated with medical cannabis. Materials and Methods:We recruited sixty-five unrelated Thai patients from the College of Pharmacy, Rangsit University. DNA were extracted using Genomic DNA Mini Kit. Genotyping of CYP2C9*2 (430C>T, rs1799853) and CYP2C9*3 (1075A>C, rs1057910) were genotyped by the TaqMan Real-time PCR assay. Results: Among these 31 medicals cannabis-induced ADRs patients, they were diagnosed with 22 (33.85%) tachycardia and 3 (4.62%) arrhythmia. There were 34 (52.31%) medical cannabis-tolerant controls who were included in this study.40 (61.53%) Thai patients were female, and 25 (38.46%) were male, with median age of 57 (range 27 – 87) years. In this study, we found none of the medical cannabis-induced ADRs carried CYP2C9*2 variant along with medical cannabis-tolerant control group. CYP2C9*3 variant (intermediate metabolizer, IM) was found just only one of thirty-one (3.23%) in the medical cannabis-induced ADRs and two of thirty-fourth (5.88%) in the tolerant controls. Conclusions: Thus, the distribution of CYP2C9 alleles offer a comprehensive view of pharmacogenomics marker in Thai population that could be used as a reference for worldwide to investigate the pharmacogenomics application.

Keywords: medical cannabis, adverse effect, CYP2C9, thai patients

Procedia PDF Downloads 104
5778 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
5777 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction

Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov

Abstract:

The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.

Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction

Procedia PDF Downloads 240
5776 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine

Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger

Abstract:

Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.

Keywords: duration, energy-saving, standard programmes, washing temperature

Procedia PDF Downloads 225
5775 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 145
5774 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 152
5773 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime

Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell

Abstract:

A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.

Keywords: crime, narrative, video, neighborhood

Procedia PDF Downloads 242
5772 Italian Colonial Strategy in Libya and the Conflict of Super Powers

Authors: Mohamed Basheer Abdul Atti Hassan

Abstract:

This research paper will follow the main outlines of the Italian colonization in Libya in a historical geopolitical approach; before we reach the contemporary map. In this study, we are also concerned with following the chain's links, not as drama in time, but as a strategy in place, so that it draws to us a map of power and the distribution of political formations throughout this period within and around Libya. From the sum of these variable distributions and successive balances, we can come up with the basic principles that determined the Italian history in Libya and formed its political entity, which is a compass of guidance and an indication of the future.

Keywords: conflict, Mediterranean, colonization, political history

Procedia PDF Downloads 167
5771 Influence of Temperature and Precipitation Changes on Desertification

Authors: Kukuri Tavartkiladze, Nana Bolashvili

Abstract:

The purpose of this paper was separation and study of the part of structure regime, which directly affects the process of desertification. A simple scheme was prepared for the assessment of desertification process; surface air temperature and precipitation for the years of 1936-2009 were analyzed.  The map of distribution of the Desertification Contributing Coefficient in the territory of Georgia was compiled. The simple scheme for identification of the intensity of the desertification contributing process has been developed and the illustrative example of its practical application for the territory of Georgia has been conducted.

Keywords: aridity, climate change, desertification, precipitation

Procedia PDF Downloads 340
5770 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 87
5769 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
5768 Geological Engineering Mapping Approach to Know Factor of Safety Distribution and Its Implication to Landslide Potential at Muria Mountain, Kudus, Central Java Province, Indonesia

Authors: Sony Hartono, Azka Decana, Vilia Yohana, Annisa Luthfianihuda, Yuni Faizah, Tati Andriani, Dewi Kania, Fachri Zulfiqar, Sugiar Yusup, Arman Nugraha

Abstract:

Landslide is a geological hazard that is quite common in some areas in Indonesia and have disadvantages impact for public around. Due to the high frequency of landslides in Indonesia, and extensive damage, landslides should be specifically noted. Landslides caused by a soil or rock unit that has been in a state of unstable slopes and not in ideal state again, so the value of ground resistance or the rock been passed by the value of the forces acting on the slope. Based on this fact, authors held a geological engineering mapping at Muria Mountain, Kudus, Central Java province which is known as an agriculture and religion tourism area. This geological engineering mapping is performed to determine landslides potential at Muria Mountain. Slopes stability will be illustrated by a number called the “factor of safety” where the number can describe how much potential a slope to fall. Slopes stability can be different depending on the physical and mechanical characteristics of the soil and slope conditions. Testing of physical and mechanical characteristics of the soil conducted in the geotechnical laboratory. The characteristics of the soil must be same when sampled as well as in the test laboratory. To meet that requirement, authors used "undisturb sample" method that will be guarantee sample will not be distracted by environtment influences. From laboratory tests on soil physical and mechanical properties obtained characteristics of the soil on a slope, and then inserted into a Geological Information Software that would generate a value of factor of safety and give a visualization slope form area of research. Then, as a result of the study, obtained a map of the ground movement distribution map and i is implications for landslides potential areas.

Keywords: factor of safety, geological engineering mapping, landslides, slope stability, soil

Procedia PDF Downloads 422
5767 Understanding Water Governance in the Central Rift Valley of Ethiopia: Zooming into Transparency, Accountability, and Participation

Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos

Abstract:

Water governance considers multi-sector participation beyond the state; and for sustainable use of water resources, appropriate laws, policies, regulations, and institutions needs to be developed and put in place. Water policy, a critical and integral instrument of water governance, guided water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is wealthy of water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. The main aim of the study was to examine the state of water resources governance in the CRV of Ethiopia, and the impact of the Ethiopian Water Resources Management Policy on water governance. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, comprehensive and integrated water management plans, water resources protection, and conservation activities were rarely implemented. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were the primary shortcomings observed. Factors such as over-abstraction, deterioration of buffer zone, and chemical erosion from surrounding farming have contributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder involvement, water distribution strategies, and the application of water governance principles must be given more emphasis.

Keywords: water resources, irrigation, governance, water allocation, governance principles, stakeholders engagement, central rift valley

Procedia PDF Downloads 97
5766 Detection of Resistive Faults in Medium Voltage Overhead Feeders

Authors: Mubarak Suliman, Mohamed Hassan

Abstract:

Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).

Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder

Procedia PDF Downloads 119
5765 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 64
5764 Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids

Authors: George B. Abaka-Wood, Massimiliano Zanin, Jonas Addai-Mensah, William Skinner

Abstract:

The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade.

Keywords: depressants, flotation, oleic acid, sodium oleate

Procedia PDF Downloads 191