Search results for: traditional learning approach
18869 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor
Procedia PDF Downloads 44018868 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications
Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka
Abstract:
The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor
Procedia PDF Downloads 52518867 Strengthening Deradicalizing Islamist Extremism in Indonesia: A Victim-Centred Approach
Authors: Milda Istiqomah
Abstract:
Deradicalization program has long been the subject of investigation. There is a steadily growing interest in examining the results on how Islamist terrorists agree to abandon violence and leave radicalism; however, it is argued that de-radicalization program on terrorism in many countries is still questionable for its effectiveness. This article aims to provide an overview of the deradicalization program specifically related to the victim-centred approach conducted by the Indonesian government and investigates critical issues surrounding the analysis of their effectiveness and outcomes. This research employs several case studies of a victim-centred approach conducted by the Indonesian Witness and Victim Protection Agency as well as the Indonesian Counter-terrorism Agency. This paper argues that the victim-centred approach to de-radicalize former terrorist prisoners faces several implemental challenges; however, the initiative may offer promise for future successful de-radicalization program. Furthermore, until more data surrounding the efficacy of this initiative available, the victim-centred approach may also constitute a significant and essential component of disengagement, de-radicalisation, and reintegration of terrorist prisoners. In conclusion, this paper suggests that further empirical research concerning prevention policies and disengagement interventions related to victim-centred approach need to be explored to give more inputs to the Indonesian government to achieve the effectiveness of de-radicalization program.Keywords: terrorism, victim-centred approach, de-radicalization, Islamist extremism
Procedia PDF Downloads 31118866 Structural Vulnerability of Banking Network – Systemic Risk Approach
Authors: Farhad Reyazat, Richard Werner
Abstract:
This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk
Procedia PDF Downloads 49418865 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English
Authors: Ghazi Alotaibi
Abstract:
The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment
Procedia PDF Downloads 45918864 The “Ecological Approach” to GIS Implementation in Low Income Countries’ and the Role of Universities: Union of Municipalities of Joumeh Case Study
Authors: A. Iaaly, O. Jadayel, R. Jadayel
Abstract:
This paper explores the effectiveness of approaches used for the implementation of technology within central governments specifically Geographic Information Systems (GIS). It examines the extent to which various strategies to GIS implementation and its roll out to users within an organization is crucial for its long term assimilation. Depending on the contextual requirements, various implementation strategies exist spanning from the most revolutionary to the most evolutionary, which have an influence on the success of GIS projects and the realization of resulting business benefits within the central governments. This research compares between two strategies of GIS implementation within the Lebanese Municipalities. The first strategy is the “Technological Approach” which is focused on technology acquisition, overlaid on existing governmental frameworks. This approach gives minimal attention to capability building and the long term sustainability of the implemented program. The second strategy, referred to as the “Ecological Approach”, is naturally oriented to the function of the organization. This approach stresses on fostering the evolution of the program and on building the human capabilities. The Union of the Joumeh Municipalities will be presented as a case study under the “Ecological Approach” and the role of the GIS Center at the University of Balamand will be highlighted. Thus, this research contributes to the development of knowledge on technology implementation and the vital role of academia in the specific context of the Lebanese public sector so that this experience may pave the way for further applications.Keywords: ecological approach GIS, low income countries, technological approach
Procedia PDF Downloads 30918863 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing
Authors: Nileshkumar Vishnav, Aditya Tatu
Abstract:
A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing
Procedia PDF Downloads 35518862 Soft Skills: Expectations and Needs in Tourism
Authors: Susana Silva, Dora Martins
Abstract:
The recent political, economic, social technological and employment changes significantly affect the tourism organizations and consequently the changing nature of the employment experience of the tourism workforce. Such scene leads several researchers and labor analysts to reflect about what kinds of jobs, knowledge and competences are need to ensure the success to teach, to learning and to work on this sector. In recent years the competency-based approach in high education level has become of significant interest. On the one hand, this approach could leads to the forming of the key students’ competences which contribute their better preparation to the professional future and on the other hand could answer better to practical demands from tourism job market. The goals of this paper are (1) to understand the expectations of university tourism students in relation to the present and future tourism competences demands, (2) to identify the importance put on the soft skills, (3) to know the importance of high qualification to their future professional activity and (4) to explore the students perception about present and future tourist sector specificities. To this proposal, a questionnaire was designed and distributed to every students who participate on classes of Hospitality Management under degree and master from one public Portuguese university. All participants were invited, during December 2014 and September 2015, to answer the questionnaire at the moment and on presence of one researcher of this study. Fulfilled the questionnaire 202 students (72, 35,6% male and 130, 64.4% female), the mean age was 21,64 (SD=5,27), 91% (n=86) were undergraduate and 18 (9%) were master students. 80% (n=162) of our participants refers as a possibility to look for a job outside the country.42% (n=85) prefers to work in a medium-sized tourism units (with 50-249 employees). According to our participants the most valued skills in tourism are the domain of foreign languages (87.6%, n=177), the ability to work as a team (85%), the personal persistence (83%, n=168), the knowledge of the product/services provided (73.8%, n=149), and assertiveness (66.3%, n=134). 65% (n=131) refers the availability to look for a job in a home distance of 1000 kilometers and 59% (n=119) do not consider the possibility to work in another area than tourism. From the results of this study we are in the position of confirming the need for universities to maintain a better link with the professional tourism companies and to rethink some competences into their learning course model. Based on our results students, universities and companies could understand more deeply the motivations, expectations and competences need to build the future career who study and work on the tourism sector.Keywords: human capital, employability, students’ competencies perceptions, soft skills, tourism
Procedia PDF Downloads 27418861 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 68818860 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 27718859 Towards a Competence Management Approach Based on Continuous Improvement
Authors: N. Sefiani, C. Fikri Benbrahim, A. Boumane, K. Reklaoui
Abstract:
Nowadays, the reflection on competence management is the basic for new competitive strategies. It is considered as the core of the problems of the global supply chain. It interacts a variety of actors: information, physical and activities flows, etc. Even though competence management is seen as the key factor for any business success, the existing approaches demonstrate the deficiencies and limitations of the competence concept. This research has two objectives: The first is to make a contribution by focusing on the development of a competence approach, based on continuous improvement. It allows the enterprise to spot key competencies, mobilize them in order to serve its strategic objectives and to develop future competencies. The second is to propose a method to evaluate the level of Collective Competence. The approach was confirmed through an application carried out at an automotive company.Keywords: competence, competencies’ approach, competence management, continuous improvement, collective competence level, performance indicator
Procedia PDF Downloads 49418858 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students
Authors: Durvi Yogesh Vagani
Abstract:
This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching
Procedia PDF Downloads 3718857 Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning
Authors: Sindile Ngubane-Mokiwa
Abstract:
This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives.Keywords: assessment design, barriers, disabilities, blind students, feedback, universal design for learning
Procedia PDF Downloads 36618856 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 42018855 Integrating Generic Skills into Disciplinary Curricula
Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi
Abstract:
There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.Keywords: curriculum, employability, generic skills, graduate attributes, higher education, information technology
Procedia PDF Downloads 25918854 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 30518853 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century
Authors: Fatih Frank Alparslan
Abstract:
The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach
Procedia PDF Downloads 5418852 The Impact of CO2 on Learning and Memory Duration of Bombus terrestris
Authors: Gholizadeh F. F., Goldansaz S. H., Bandani A. R., A. Ashouri
Abstract:
This study aimed to investigate the direct effects of increasing carbon dioxide (CO₂) concentration on the behavior of Bombus terrestris bumblebees in laboratory conditions to understand the outcomes of the augmentation of this gas in the Earth's atmosphere on the decline of populations of these pollinators. Learning and memory duration of bumblebees were evaluated as two main behavioral factors in social insects at different concentrations of CO₂. In both series of experiments, the behavior of bees under the influence of CO₂ changes compared to the control. Insects kept at high CO₂ concentrations learn less than control bees and spend more time identifying and navigating to discover their food source and access time (nectar consumption). These results showed that bees maybe lose some of their food resources due to poorer identification and act weaker on searching due to less memory and avoiding the enemy in higher CO₂ concentration. Therefore, CO₂ increasing concentration can be one of the reasons for the decline of these pollinating insects' populations by negatively affecting their fitness.Keywords: Bombus terrestris, CO₂, learning, memory duration
Procedia PDF Downloads 18318851 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom
Authors: Yen-Hui Lu
Abstract:
In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning
Procedia PDF Downloads 8518850 [Keynote Talk]: Evidence Fusion in Decision Making
Authors: Mohammad Abdullah-Al-Wadud
Abstract:
In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty
Procedia PDF Downloads 43118849 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 18718848 Assessment of Natural Flood Management Potential of Sheffield Lakeland to Flood Risks Using GIS: A Case Study of Selected Farms on the Upper Don Catchment
Authors: Samuel Olajide Babawale, Jonathan Bridge
Abstract:
Natural Flood Management (NFM) is promoted as part of sustainable flood management (SFM) in response to climate change adaptation. Stakeholder engagement is central to this approach, and current trends are progressively moving towards a collaborative learning approach where stakeholder participation is perceived as one of the indicators of sustainable development. Within this methodology, participation embraces a diversity of knowledge and values underpinned by a philosophy of empowerment, equity, trust, and learning. To identify barriers to NFM uptake, there is a need for a new understanding of how stakeholder participation could be enhanced to benefit individual and community resilience within SFM. This is crucial in light of climate change threats and scientific reliability concerns. In contributing to this new understanding, this research evaluated the proposed interventions on six (6) UK NFM in a catchment known as the Sheffield Lakeland Partnership Area with reference to the Environment Agency Working with Natural Processes (WWNP) Potentials/Opportunities. Three of the opportunities, namely Run-off Attenuation Potential of 1%, Run-off Attenuation Potential of 3.3% and Riparian Woodland Potential, were modeled. In all the models, the interventions, though they have been proposed or already in place, are not in agreement with the data presented by EA WWNP. Findings show some institutional weaknesses, which are seen to inhibit the development of adequate flood management solutions locally with damaging implications for vulnerable communities. The gap in communication from practitioners poses a challenge to the implementation of real flood mitigating measures that align with the lead agency’s nationally accepted measures which are identified as not feasible by the farm management officers within this context. Findings highlight a dominant top-bottom approach to management with very minimal indication of local interactions. Current WWNP opportunities have been termed as not realistic by the people directly involved in the daily management of the farms, with less emphasis on prevention and mitigation. The targeted approach suggested by the EA WWNP is set against adaptive flood management and community development. The study explores dimensions of participation using the self-reliance and self-help approach to develop a methodology that facilitates reflections of currently institutionalized practices and the need to reshape spaces of interactions to enable empowered and meaningful participation. Stakeholder engagement and resilience planning underpin this research. The findings of the study suggest different agencies have different perspectives on “community participation”. It also shows communities in the case study area appear to be least influential, denied a real chance of discussing their situations and influencing the decisions. This is against the background that the communities are in the most productive regions, contributing massively to national food supplies. The results are discussed concerning practical implications for addressing interagency partnerships and conducting grassroots collaborations that empower local communities and seek solutions to sustainable development challenges. This study takes a critical look into the challenges and progress made locally in sustainable flood risk management and adaptation to climate change by the United Kingdom towards achieving the global 2030 agenda for sustainable development.Keywords: natural flood management, sustainable flood management, sustainable development, working with natural processes, environment agency, run-off attenuation potential, climate change
Procedia PDF Downloads 7618847 New Territories: Materiality and Craft from Natural Systems to Digital Experiments
Authors: Carla Aramouny
Abstract:
Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.Keywords: digital fabrication, design and craft, materiality, natural systems
Procedia PDF Downloads 13118846 Profit Comparative of Fisheries in East Aceh Regency Aceh Province
Authors: Mawardati Mawardati
Abstract:
This research was carried out on the traditional milkfish and shrimp culture cultivation from March to May 2018 in East Aceh District. This study aims to to analyze the differences between traditional milkfish cultivation and shrimp farming in East Aceh District, Aceh Province. The analytical method used is acquisition analysis and Independent Sample T test analysis. The results showed a significant difference between milkfish farming and shrimp farming in East Aceh District, Aceh Province. Based on the results of the analysis, the average profit from shrimp farming is higher than that of milkfish farming. This demand exceeds market demand for exports. Thus the price of shrimp is still far higher than the price of milk fish.Keywords: comparative, profit, shrimp, milkfish
Procedia PDF Downloads 15718845 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 14118844 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 13718843 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 5818842 Ensuring Compliancy in Traditional Tibetan Medicine Treatment Through Patient Education
Authors: Nashalla Gwyn Nyinda
Abstract:
The ancient system of Tibetan Medicine, known as Sowa Rigpa across the Himalayan regions, is a systematic system of healing encouraging balance primarily through diet and behavior modifications. With the rise of the popularity of Tibetan Medicine, compliance is critical to successful treatment outcomes. As patients learn more about who they are as individuals and how their elemental balances or imbalances affect disorders and mental-emotional balance, they develop faith and dedication to their healing process. Specifically, regarding diet and behavior and the basic principles of the medical system, patient compliance increases dramatically in all treatment areas when they understand why a treatment or dietary prescription guidance is effective. Successful responses to Tibetan treatment rely on a buy-in from the patient. Trust between the slower process of Traditional medicine treatments, the Tibetan physician and the patient is a cornerstone of treatment. The resulting decrease in the use of allopathic medicine and better health outcomes for acute and chronic disorders are well documented. This paper addresses essential points of the Tibetan Medicine system, dialogue between doctor and patient focused on appropriate and seasonal changing dietetics. Such fluctuating treatment approaches, based on external elemental factors, dramatically increase treatment outcomes. Specifically, this work addresses why allopathic medicine models may need more trust development between practitioner and patient.Keywords: compliancy in treatment, diet and lifestyle medicine, nature and elements as medicine, seasonal diets, Sowa Rigpa, traditional Tibetan medicine, treatment outcomes
Procedia PDF Downloads 7318841 Hear Me: The Learning Experience on “Zoom” of Students With Deafness or Hard of Hearing Impairments
Authors: H. Weigelt-Marom
Abstract:
Over the years and up to the arousal of the COVID-19 pandemic, deaf or hard of hearing students studying in higher education institutions, participated lectures on campus using hearing aids and strategies adapted for frontal learning in a classroom. Usually, these aids were well known to them from their earlier study experience in school. However, the transition to online lessons, due to the latest pandemic, led deaf or hard of hearing students to study outside of their physical, well known learning environment. The change of learning environment and structure rose new challenges for these students. The present study examined the learning experience, limitations, challenges and benefits regarding learning online with lecture and classmates via the “Zoom” video conference program, among deaf or hard of hearing students in academia setting. In addition, emotional and social aspects related to learning in general versus the “Zoom” were examined. The study included 18 students diagnosed as deaf or hard of hearing, studying in various higher education institutions in Israel. All students had experienced lessons on the “Zoom”. Following allocation of the group study by the deaf and hard of hearing non-profit organization “Ma’agalei Shema”, and receiving the participants inform of consent, students were requested to answer a google form questioner and participate in an interview. The questioner included background information (e.g., age, year of studying, faculty etc.), level of computer literacy, and level of hearing and forms of communication (e.g., lip reading, sign language etc.). The interviews included a one on one, semi-structured, in-depth interview, conducted by the main researcher of the study (interview duration: up to 60 minutes). The interviews were held on “ZOOM” using specific adaptations for each interviewee: clear face screen of the interviewer for lip and face reading, and/ or professional sign language or live text transcript of the conversation. Additionally, interviewees used their audio devices if needed. Questions regarded: learning experience, difficulties and advantages studying using “Zoom”, learning in a classroom versus on “Zoom”, and questions concerning emotional and social aspects related to learning. Thematic analysis of the interviews revealed severe difficulties regarding the ability of deaf or hard of hearing students to comprehend during ”Zoom“ lessons without adoptive aids. For example, interviewees indicated difficulties understanding “Zoom” lessons due to their inability to use hearing devices commonly used by them in the classroom (e.g., FM systems). 80% indicated that they could not comprehend “Zoom” lessons since they could not see the lectures face, either because lectures did not agree to open their cameras or, either because they did not keep a straight forward clear face appearance while teaching. However, not all descriptions regarded learning via the “zoom” were negative. For example, 20% reported the recording of “Zoom” lessons as a main advantage. Enabling then to repeatedly watch the lessons at their own pace, mostly assisted by friends and family to translate the audio output into an accessible input. These finding and others regarding the learning experience of the group study on the “Zoom”, as well as their recommendation to enable deaf or hard of hearing students to study inclusively online, will be presented at the conference.Keywords: deaf or hard of hearing, learning experience, Zoom, qualitative research
Procedia PDF Downloads 12318840 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 212