Search results for: reliability modeling
2138 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 572137 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 702136 Influence of Security on Fan Attendance during Nigeria Professional Football League Matches
Authors: B. O. Diyaolu
Abstract:
The stadium transcends a field of play to cultural heritage of a club especially when there is security of life and property and a conducive environment with exciting media facilities, CCTV and adequate field of play. Football fans love watching their clubs’ matches especially when nothing discourages their presence in the stadium. This study investigated the influence of security on fans’ attendance during Nigeria Professional Football League matches. Descriptive survey research design was used and the population consists of all Nigeria Professional Football League fans. Simple random sampling technique was used to pick a state from the six geo-political zones. 600 respondents comprising male and female fans were sampled from the ten selected vendors’ stands in each selected state. A structured questionnaire on Security and Fan attendance scale (SFAS) was used. The instrument consists of two sections. Section A seeks information on demographic data of the respondents, while section B was used to elicit information on security and fans’ attendance. The modified instrument which consists of 20 items has a reliability coefficient of 0.73. The hypothesis was tested at 0.05 significance level. The completed questionnaire was collated, coded and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that adequate security significantly influences fan attendance during Nigeria Professional Football League matches. There is no sport that can develop if the facilities in use are inadequate. Improving the condition of the stadium in Nigeria is paramount to the development of the Nigeria Professional Football League. All stakeholders in the organization of the League must put into consideration the need to improve the standard of the stadium as it will help to increase the attendance of fans during matches. Only the standard ones should be used during matches.Keywords: adequate security, fans attendance, football fans, football stadium, Nigeria professional football league
Procedia PDF Downloads 1152135 Study on Beta-Ray Detection System in Water Using a MCNP Simulation
Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo
Abstract:
In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator
Procedia PDF Downloads 5102134 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers
Procedia PDF Downloads 2582133 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 1682132 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement
Authors: Amir Reza Heydari, Yaser Jenab
Abstract:
Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.Keywords: atherosclerosis, materials, restenosis, review, validation
Procedia PDF Downloads 912131 Modelling Suspended Solids Transport in Dammam (Saudi Arabia) Coastal Areas
Authors: Hussam Alrabaiah
Abstract:
Some new projects (new proposed harbor, recreational projects) are considered in the eastern coasts of Dammam city, Saudi Arabia. Dredging operations would significantly alter coast hydrological and sediment transport processes. It is important that the project areas must keep flushing the fresh sea water in and out with good water quality parameters, which are currently facing increased pressure from urbanization and navigation requirements in conjunction with industrial developments. A suspended solids or sediments are expected to affect the flora and fauna in that area. Governing advection-diffusion equations are considered to understand the consequences of such projects. A numerical modeling study is developed to study the effect of dredging and, in particular, the suspended sediments concentrations (mg/L) changed in the region. The results were obtained using finite element method using an in-house or commercial software. Results show some consistency with data observed in that region. Recommendations based on results could be formulated for decision makers to protect the environment in the long term.Keywords: finite element, method, suspended solids transport, advection-diffusion
Procedia PDF Downloads 2842130 Knowledge Sharing within a Team: Exploring the Antecedents and Role of Trust
Authors: Li Yan Hei, Au Wing Tung
Abstract:
Knowledge sharing is a process in which individuals mutually exchange existing knowledge and co-create new knowledge. Previous research has confirmed that trust is positively associated with knowledge sharing. However, only few studies systematically examined the antecedents of trust and these antecedents’ impacts on knowledge sharing. In order to explore and understand the relationships between trust and knowledge sharing in depth, this study proposed a relationship maintenance-based model to examine the antecedents of trust in knowledge sharing in project teams. Three critical elements within a project team were measured, including the environment, project team partner and interaction. It was hypothesized that the trust would lead to knowledge sharing and in turn result in perceived good team performance. With a sample of 200 Hong Kong employees, the proposed model was evaluated with structural equation modeling. Expected findings are trust will contribute to knowledge sharing, resulting in better team performance. The results will also offer insights into antecedents of trust that play a heavy role in the focal relationship. The present study contributes to a more holistic understanding of relationship between trust and knowledge sharing by linking the antecedents and outcomes. The findings will raise the awareness of project managers on ways to promote knowledge sharing.Keywords: knowledge sharing, project management, team, trust
Procedia PDF Downloads 6172129 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces
Authors: Faezeh Shalchy
Abstract:
Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.Keywords: fiber-reinforced concrete, adhesion, molecular modeling
Procedia PDF Downloads 3282128 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 862127 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel
Procedia PDF Downloads 2082126 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains
Authors: Yohanes Kristianto
Abstract:
The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy
Procedia PDF Downloads 1502125 Measuring Entrepreneurship Intentions among Nigerian University Graduates: A Structural Equation Modeling Technique
Authors: Eunice Oluwakemi Chukwuma-Nwuba
Abstract:
Nigeria is a developing country with an increasing rate of graduate unemployment. This has triggered successive government administrations to promote the variety of programmes to address the situation. However, none of these efforts yielded the desired outcome. Accordingly, in 2006 the government included entrepreneurship module in the curriculum of universities as a compulsory general programme for all undergraduate courses. This is in the hope that the programme will help to promote entrepreneurial mind-set and new venture creation among graduates and as a result reduce the rate of graduate unemployment. The study explores the effectiveness of entrepreneurship education in promoting entrepreneurship. This study is significant in view of the endemic graduate unemployment in Nigeria and the social consequences such as youth restiveness and militancy. It is guided by the theory of planned behaviour. It employed the two-stage structural equation modelling (AMOS) to model entrepreneurial intentions as a function of innovative teaching methods, traditional teaching methods and culture Personal attitude and subjective norm are proposed to mediate the relationships between the exogenous and the endogenous variables. The first stage was tested using multi-group confirmatory factor analysis (MGCFA) framework to confirm that the two groups assign the same meaning to the scale items and to obtain goodness-of-fit indices. The multi-group confirmatory factor analysis included the tests of configural, metric and scalar invariance. With the attainment of full configural invariance and partial metric and scalar invariance, the second stage – the structural model was applied hypothesising that, the entrepreneurial intentions of graduates (respondents who have participated in the compulsory entrepreneurship programme) will be higher than those of undergraduates (respondents who are yet to participate in the programme). The study uses the quasi-experimental design. The samples comprised 409 graduates (experimental group) and 402 undergraduates (control group) from six federal universities in Nigeria. Our findings suggest that personal attitude is positively related with entrepreneurial intentions, largely confirming prior literature. However, unlike previous studies, our results indicate that subjective norm has significant direct and indirect impact on entrepreneurial intentions indicating that reference people of the participants have important roles to play in their decision to be entrepreneurial. Furthermore, unlike the assertions in prior studies, the result suggests that traditional teaching methods have indirect effect on entrepreneurial intentions supporting that since personal characteristics can change in an educational situation, an education purposively directed at entrepreneurship might achieve similar results if not better. This study has implication for practice and theory. The research extends to the theoretical understanding of the formation of entrepreneurial intentions and explains the role of the reference others in relation to how graduates perceive entrepreneurship. Further, the study adds to the body of knowledge on entrepreneurship education in Nigeria universities and provides a developing country perspective. It proposes further research in the exploration of entrepreneurship education and entrepreneurial intentions of graduates from across the country’s universities as necessary and imperative.Keywords: entrepreneurship education, entrepreneurial intention, structural equation modeling, theory of planned behaviour
Procedia PDF Downloads 2592124 Teachers’ Personal and Professional Characteristics: How They Relate to Teacher-Student Relationships and Students’ Behavior
Authors: Maria Poulou
Abstract:
The study investigated how teachers’ self-rated Emotional Intelligence (EI), competence in implementing Social and Emotional Learning (SEL) skills and teaching efficacy relate to teacher-student relationships and students’ emotional and behavioral difficulties. Participants were 98 elementary teachers from public schools in central Greece. They completed the Self-Rated Emotional Intelligence Scale (SREIS), the Teacher SEL Beliefs Scale, the Teachers’ Sense of Efficacy Scale (TSES), the Student-Teacher Relationships Scale-Short Form (STRS-SF) and the Strengths and Difficulties Questionnaire (SDQ) for 617 of their students, aged 6-11 years old. Structural equation modeling was used to examine an exploratory model of the variables. It was demonstrated that teachers’ emotional intelligence, SEL beliefs and teaching efficacy were significantly related to teacher-student relationships, but they were not related to students’ emotional and behavioral difficulties. Rather, teachers’ perceptions of teacher-students relationships were significantly related to these difficulties. These findings and their implications for research and practice are discussed.Keywords: emotional intelligence, social and emotional learning, teacher-student relationships, teaching efficacy
Procedia PDF Downloads 4402123 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers
Authors: Yungtai Lo
Abstract:
The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model
Procedia PDF Downloads 2872122 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 3242121 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method
Authors: Kimia Khoshdel Vajari, Saber Saffar
Abstract:
Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis
Procedia PDF Downloads 1182120 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease
Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 1212119 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 462118 Assessment of Dimensions and Gully Recovery With GPS Receiver and RPA (Drone)
Authors: Mariana Roberta Ribeiro, Isabela de Cássia Caramello, Roberto Saverio Souza Costa
Abstract:
Currently, one of the most important environmental problems is soil degradation. This wear is the result of inadequate agricultural practices, with water erosion as the main agent. As the runoff water is concentrated in certain points, it can reach a more advanced stage, which are the gullies. In view of this, the objective of this work was to evaluate which methodology is most suitable for the purpose of elaborating a project for the recovery of a gully, relating work time, data reliability, and the final cost. The work was carried out on a rural road in Monte Alto - SP, where there is 0.30 hectares of area under the influence of a gully. For the evaluation, an aerophotogrammetric survey was used with RPA, with georeferenced points, and with a GNSS L1/L2 receiver. To assess the importance of georeferenced points, there was a comparison of altimetric data using the support points with altimetric data using only the aircraft's internal GPS. Another method used was the survey by conventional topography, where coordinates were collected by total station and L1/L2 Geodetic GPS receiver. Statistical analysis was performed using analysis of variance (ANOVA) using the F test (p<0.05), and the means between treatments were compared using the Tukey test (p<0.05). The results showed that the surveys carried out by aerial photogrammetry and by conventional topography showed no significant difference for the analyzed parameters. Considering the data presented, it is possible to conclude that, when comparing the parameters of accuracy, the final volume of the gully, and cost, for the purpose of elaborating a project for the recovery of a gully, the methodologies of aerial photogrammetric survey and conventional topography do not differ significantly. However, when working time, use of labor, and project detail are compared, the aerial photogrammetric survey proves to be more viable.Keywords: drones, erosion, soil conservation, technology in agriculture
Procedia PDF Downloads 1152117 Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment
Authors: Jisong Ryu, Woosik Lee, Yonggu Jang
Abstract:
The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea.Keywords: Korea-style GPR testbed, GPR, metal pipe detecting, non-metal pipe detecting
Procedia PDF Downloads 1002116 A Comprehensive Overview of Solar and Vertical Axis Wind Turbine Integration Micro-Grid
Authors: Adnan Kedir Jarso, Mesfin Megra Rorisa, Haftom Gebreslassie Gebregwergis, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
A microgrid is a small-scale power grid that can operate independently or in conjunction with the main power grid. It is a promising solution for providing reliable and sustainable energy to remote areas. The integration of solar and vertical axis wind turbines (VAWTs) in a microgrid can provide a stable and efficient source of renewable energy. This paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid. The paper discusses the design, operation, and control of a microgrid that integrates solar and VAWTs. The paper also examines the performance of the microgrid in terms of efficiency, reliability, and cost-effectiveness. The paper highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper concludes that the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper recommends further research to optimize the design and operation of a microgrid that integrates solar and VAWTs. The paper also recommends the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs. In conclusion, the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid and highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper recommends further research and the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs.Keywords: hybrid generation, intermittent power, optimization, photovoltaic, vertical axis wind turbine
Procedia PDF Downloads 972115 Maintaining Experimental Consistency in Geomechanical Studies of Methane Hydrate Bearing Soils
Authors: Lior Rake, Shmulik Pinkert
Abstract:
Methane hydrate has been found in significant quantities in soils offshore within continental margins and in permafrost within arctic regions where low temperature and high pressure are present. The mechanical parameters for geotechnical engineering are commonly evaluated in geomechanical laboratories adapted to simulate the environmental conditions of methane hydrate-bearing sediments (MHBS). Due to the complexity and high cost of natural MHBS sampling, most laboratory investigations are conducted on artificially formed samples. MHBS artificial samples can be formed using different hydrate formation methods in the laboratory, where methane gas and water are supplied into the soil pore space under the methane hydrate phase conditions. The most commonly used formation method is the excess gas method which is considered a relatively simple, time-saving, and repeatable testing method. However, there are several differences in the procedures and techniques used to produce the hydrate using the excess gas method. As a result of the difference between the test facilities and the experimental approaches that were carried out in previous studies, different measurement criteria and analyses were proposed for MHBS geomechanics. The lack of uniformity among the various experimental investigations may adversely impact the reliability of integrating different data sets for unified mechanical model development. In this work, we address some fundamental aspects relevant to reliable MHBS geomechanical investigations, such as hydrate homogeneity in the sample, the hydrate formation duration criterion, the hydrate-saturation evaluation method, and the effect of temperature measurement accuracy. Finally, a set of recommendations for repeatable and reliable MHBS formation will be suggested for future standardization of MHBS geomechanical investigation.Keywords: experimental study, laboratory investigation, excess gas, hydrate formation, standardization, methane hydrate-bearing sediment
Procedia PDF Downloads 582114 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection
Procedia PDF Downloads 3872113 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model
Abstract:
This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.Keywords: contests, Tullock's model, political elections, control expenses
Procedia PDF Downloads 1452112 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles
Authors: S. Levitsky
Abstract:
Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid
Procedia PDF Downloads 3042111 Wind Wave Modeling Using MIKE 21 SW Spectral Model
Authors: Pouya Molana, Zeinab Alimohammadi
Abstract:
Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio
Procedia PDF Downloads 4022110 Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes
Authors: Manoja Rajalakshmi Aravindakshana, Devleena Ghosha, Chittaranjan Mandala, K. V. Venkateshb, Jit Sarkarc, Partha Chakrabartic, Sujay K. Maity
Abstract:
Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology.Keywords: oral minimal model, OGTT, obese and non-obese T2DM, mathematical modeling, parameter estimation
Procedia PDF Downloads 922109 Exploring Augmented Reality in Graphic Design: A Hybrid Pedagogical Model for Design Education
Authors: Nan Hu, Wujun Wang
Abstract:
In the ever-changing digital arena, augmented reality (AR) applications have transitioned from technological enthusiasm into business endeavors, signaling a near future in which AR applications are integrated into daily life. While practitioners in the design industry continue to explore AR’s potential for innovative communication, educators have taken steps to incorporate AR into the curricula for design, explore its creative potential, and realize early initiatives for teaching AR in design-related disciplines. In alignment with recent advancements, this paper presents a pedagogical model for a hybrid studio course in which students collaborate with AR alongside 3D modeling and graphic design. The course extended students’ digital capacity, fostered their design thinking skills, and immersed them in a multidisciplinary design process. This paper outlines the course and evaluates its effectiveness by discussing challenges encountered and outcomes generated in this particular pedagogical context. By sharing insights from the teaching experience, we aim to empower the community of design educators and offer institutions a valuable reference for advancing their curricular approaches. This paper is a testament to the ever-evolving landscape of design education and its response to the digital age.Keywords: 3D, AR, augmented reality, design thinking, graphic design
Procedia PDF Downloads 71