Search results for: hierarchical text classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10136

Search results for: hierarchical text classification models

6536 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes

Authors: Mithil Pandey, Ragunathan Bala Subramanian

Abstract:

One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.

Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite

Procedia PDF Downloads 359
6535 Alignment between Governance Structures and Food Safety Standards on the Shrimp Supply Chain in Indonesia

Authors: Maharani Yulisti, Amin Mugera, James Fogarty

Abstract:

Food safety standards have received significant attention in the fisheries global market due to health issues, free trade agreements, and increasing aquaculture production. Vertical coordination throughout the supply chain of fish producing and exporting countries is needed to meet food safety demands imposed by importing countries. However, the complexities of the supply chain governance structures and difficulties in standard implementation can generate safety uncertainty and high transaction costs. Using a Transaction Cost Economics framework, this paper examines the alignment between food safety standards and the governance structures in the shrimp supply chain in Indonesia. We find the supply chain is organized closer to the hierarchy-like governance structure where private standard (organic standard) are implemented and more towards a market-like governance structure where public standard (IndoGAP certification) are more prevalent. To verify the statements, two cases are examined from Sidoarjo district as a centre of shrimp production in Indonesia. The results show that public baseline FSS (Food Safety Standards) need additional mechanism to achieve a coordinated chain-wide response because uncertainty, asset specificity, and performance measurement problems are high in this chain. Organic standard as private chain-wide FSS is more efficient because it has been achieved by hierarchical-like type of governance structure.

Keywords: governance structure, shrimp value chain, food safety standards, transaction costs economics

Procedia PDF Downloads 382
6534 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 132
6533 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 114
6532 Ecosystem Carbon Stocks Vary in Reference to the Models Used, Socioecological Factors and Agroforestry Practices in Central Ethiopia

Authors: Gadisa Demie, Mesele Negash, Zerihun Asrat, Lojka Bohdan

Abstract:

Deforestation and forest degradation in the tropics have led to significant carbon (C) emissions. Agroforestry (AF) is a suitable land-use option for tackling such declines in ecosystem services, including climate change mitigation. However, it is unclear how biomass models, AF practices, and socio-ecological factors determine these roles, which hinders the implementation of climate change mitigation initiatives. This study aimed to estimate the ecosystem C stocks of the studied AF practices in relation to socio-ecological variables in central Ethiopia. Out of 243 AF farms inventoried, 108 were chosen at random from three AF practices to estimate their biomass and soil organic carbon. A total of 432 soil samples were collected from 0–30 and 30–60 cm soil depths; 216 samples were taken for each soil organic carbon fraction (%C) and bulk density computation. The study found that the currently developed allometric equations were the most accurate to estimate biomass C for trees growing in the landscape when compared to previous models. The study found higher overall biomass C in woodlots (165.62 Mg ha-¹) than in homegardens (134.07 Mg ha-¹) and parklands (19.98 Mg ha-¹). Conversely, overall, SOC was higher for homegardens (143.88 Mg ha-¹), but lower for parklands (53.42 Mg ha-¹). The ecosystem C stock was comparable between homegardens (277.95 Mg ha-¹) and woodlots (275.44 Mg ha-¹). The study found that elevation, wealthy levels, AF farm age, and size have a positive and significant (P < 0.05) effect on overall biomass and ecosystem C stocks but non-significant with slope (P > 0.05). Similarly, SOC increased with increasing elevation, AF farm age, and wealthy status but decreased with slope and non-significant with AF farm size. The study also showed that species diversity had a positive (P <0.05) effect on overall biomass C stocks in homegardens. The overall study highlights that AF practices have a great potential to lock up more carbon in biomass and soils; however, these potentials were determined by socioecological variables. Thus, these factors should be considered in management strategies that preserve trees in agricultural landscapes in order to mitigate climate change and support the livelihoods of farmers.

Keywords: agricultural landscape, biomass, climate change, soil organic carbon

Procedia PDF Downloads 55
6531 Cultural References in Jean-François Menard's French Translation of Harry Potter a L'ecole Des Sorciers: An Analysis of the Translated Catchphrases and Spells and Cultural Elements

Authors: Brynn Patrice Fader

Abstract:

The objective of this research project is to assess the ways in which Jean-Francois Menards French translation Harry Potter a l'ecole des sorciers translates the cultural references from the original text JK Rowlings' Harry Potter and the Philosophers Stone. The method of this analysis is to focus on analyzing the reasons for and the ways in which Menard translates the spells and catchphrases throughout the novel and the effects that these choices have on the reader. While at times Menard resorts to the omission or manipulation and borrowing he also contrasts these techniques by transferring the cultural references using the direct translational approach. It appears that the translator resorts to techniques other than direct translation when it is necessary to ensure that the target audience will understand the events and conversations taking place.

Keywords: cultural elements, direct translation, manipulation, omission

Procedia PDF Downloads 326
6530 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique

Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele

Abstract:

The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.

Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties

Procedia PDF Downloads 123
6529 Coping Techniques, Repertoire, and Flexibility in Parental Adjustment to Pediatric Cancer

Authors: Michael Dolgin, Oz Hamtzani, Talma Kushnir

Abstract:

A literature review has shown that while parents of children with cancer experience increased levels of psychological distress associated with their child's medical condition, considerable variability in parental adjustment is evident. Of the factors that may account for this variability, little attention has been devoted to the simultaneous interaction of three coping constructs and their role in parental adjustment: (1) Coping techniques employed, (2) Repertoire of coping techniques, and (3) Flexibility in applying coping techniques. While these constructs have been studied individually in relation to adjustment in general, studies to date have not included them together within a single conceptual model and research design and evaluated them in a clinical population. The objective of the current study was to determine how these three coping technique constructs interact to impact parental adjustment to pediatric cancer. A cross-sectional sample of 145 parents of children in active cancer treatment completed standardized measures of coping techniques, repertoire, flexibility, and parental distress. A hierarchical multiple regression analysis demonstrated that 37% of the variance in parental distress was predicted by the use of avoidance-focused coping techniques [F(1,118)=69.843, p<.001], with an additional 3% predicted by coping repertoire [F(2,117)=7.63, p=.00] for a total of 40% variance explained. Coping flexibility was found to mediate the relationship between coping repertoire and parental distress. These findings suggest that coping techniques employed by parents (problem/emotion-focused vs. avoidance-focused), as well as coping repertoire, significantly impact parental adjustment. Flexibility in applying coping techniques within one’s coping repertoire further contributes to parental adjustment. Implications for further study and clinical intervention will be presented.

Keywords: coping techniques, repertoire, flexibility, adjustment

Procedia PDF Downloads 47
6528 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 141
6527 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 297
6526 Personality as a Determinant of Career Decision-Making Difficulties in a Higher Educational Institution in Ghana

Authors: Gladys Maame Akua Setordzie

Abstract:

Decision on one’s future career is said to have both beneficial and detrimental effects on one’s mental health, social and economic standing later in life, making it an important developmental problem for young people. In this light, the study’s overarching goal was to assess how different personality traits serve as a determinant of career decision-making difficulties experienced by university students in Ghana. Specifically, for the purpose of shaping the future of individualized career counselling support, the study investigated whether the “Big Five” personality traits influenced the difficulties students at the University of Ghana encounter while making career decisions. Cross-sectional survey design using a stratified random sampling technique, sampled 494 undergraduate students from the University of Ghana, who completed the Big Five Questionnaire and the Career Decision-making Difficulties Questionnaire. Hierarchical multiple regression analyses indicated that neuroticism, consciousness, and openness, accounted for a significant proportion of the variance in career decision-making difficulties. This study provides empirical evidence to support the idea that neuroticism is not necessarily a negative emotion when it comes to career decisionmaking, as has been suggested in previous studies, but rather it allows students to perform better in career decision-making. These results suggests that personality traits play a significant role in the career decision-making process of students of the University of Ghana. Therefore, a better understanding of how different personal and interpersonal factors impact career indecision in students could help career counsellors develop more focused vocational and career guidance interventions.

Keywords: career decision-making difficulties, dysfunctional career beliefs, personality traits, young people

Procedia PDF Downloads 106
6525 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 461
6524 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches

Authors: Dimitrios I. Tselentis, Simon P. Washington

Abstract:

Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.

Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches

Procedia PDF Downloads 491
6523 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 158
6522 Land-Use Transitions and Its Implications on Food Production Systems in Rural Landscape of Southwestern Ghana

Authors: Evelyn Asante Yeboah, Kwabena O. Asubonteng, Justice Camillus Mensah, Christine Furst

Abstract:

Smallholder-dominated mosaic landscapes in rural Africa are relevant for food production, biodiversity conservation, and climate regulation. Land-use transitions threaten the multifunctionality of such landscapes, especially the production capacity of arable lands resulting in food security challenges. Using land-cover maps derived from maximum likelihood classification of Landsat satellite images for the years 2002, 2015, and 2020, post-classification change detection, landscape metrics, and key informant interviews, the study assessed the implications of rubber plantation expansion and oil business development on the food production capacity of Ahanta West District, Ghana. The analysis reveals that settlement and rubber areas expanded by 5.82% and 10.33% of the landscape area, respectively, between 2002 and 2020. This increase translates into over twice their initial sizes (144% in settlement change and 101% in rubber change). Rubber plantation spread dominates the north and southwestern areas, whereas settlement is widespread in the eastern parts of the landscape. Rubber and settlement expanded at the expense of cropland, palm, and shrublands. Land-use transitions between cropland, palm, and shrubland were targeting each other, but the net loss in shrubland was higher (-17.27%). Isolation, subdivision, connectedness, and patch adjacency indices showed patch consolidation in the landscape configuration from 2002 to 2015 and patch fragmentation from 2015 to 2020. The study also found patches with consistent increasing connectivity in settlement areas indicating the influence of oil discovery developments and fragmentation tendencies in rubber, shrubland, cropland, and palm, indicating springing up of smaller rubber farms, the disappearance of shrubland, and splitting up of cropland and palm areas respectively. The results revealed a trend in land-use transitions in favor of smallholder rubber plantation expansion and oil discovery developments, which suggest serious implications on food production systems and poses a risk for food security and landscape multifunctional characteristics. To ensure sustainability in land uses, this paper recommends the enforcement of legislative instruments governing spatial planning and land use in Ghana as embedded in the 2016 land-use and spatial planning act.

Keywords: food production systems, food security, Ghana’s west coast, land-use transitions, multifunctional rural landscapes

Procedia PDF Downloads 151
6521 A Literature Review of Emotional Labor and Emotional Labor Strategies

Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim

Abstract:

This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. For this, it gropes for methods for reducing conceptual ambiguity. Further, it arranges the concept of emotional labor; and examines and reviews comparatively the currents of the existing studies and looks for the characteristics and correlations of their classification criteria. That is, this study intends to arrange systematically and examine theories on emotional labor suggested hitherto, and suggest a future direction of research on emotional labor on the basis thereof. In addition, it attempts to look for positive aspects of the results of emotional labor.

Keywords: emotion labor, dimensions of emotional labor, surface acting, deep acting

Procedia PDF Downloads 361
6520 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 23
6519 Reading in Multiple Arabic's: Effects of Diglossia and Orthography

Authors: Aula Khatteb Abu-Liel

Abstract:

The study investigated the effects of diglossia and orthography on reading in Arabic, manipulating reading in Spoken Arabic (SA), using Arabizi, in which it is written using Latin letters on computers/phones, and the two forms of the conventional written form Modern Standard Arabic (MSA): vowelled (shallow) and unvowelled (deep). 77 skilled readers in 8th grade performed oral reading of single words and narrative and expository texts, and silent reading comprehension of both genres of text. Oral reading and comprehension revealed different patterns. Single words and texts were read faster and more accurately in unvoweled MSA, slowest and least accurately in vowelled MSA, and in-between in Arabizi. Comprehension was highest for vowelled MSA. Narrative texts were better than expository texts in Arabizi with the opposite pattern in MSA. The results suggest that frequency of the type of texts and the way in which phonology is encoded affect skilled reading.

Keywords: Arabic, Arabize, computer mediated communication, diglossia, modern standard Arabic

Procedia PDF Downloads 169
6518 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions

Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko

Abstract:

The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.

Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy

Procedia PDF Downloads 446
6517 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell

Procedia PDF Downloads 380
6516 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 164
6515 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 129
6514 An Empirical Analysis of the Effects of Corporate Derivatives Use on the Underlying Stock Price Exposure: South African Evidence

Authors: Edson Vengesai

Abstract:

Derivative products have become essential instruments in portfolio diversification, price discovery, and, most importantly, risk hedging. Derivatives are complex instruments; their valuation, volatility implications, and real impact on the underlying assets' behaviour are not well understood. Little is documented empirically, with conflicting conclusions on how these instruments affect firm risk exposures. Given the growing interest in using derivatives in risk management and portfolio engineering, this study examines the practical impact of derivative usage on the underlying stock price exposure and systematic risk. The paper uses data from South African listed firms. The study employs GARCH models to understand the effect of derivative uses on conditional stock volatility. The GMM models are used to estimate the effect of derivatives use on stocks' systematic risk as measured by Beta and on the total risk of stocks as measured by the standard deviation of returns. The results provide evidence on whether derivatives use is instrumental in reducing stock returns' systematic and total risk. The results are subjected to numerous controls for robustness, including financial leverage, firm size, growth opportunities, and macroeconomic effects.

Keywords: derivatives use, hedging, volatility, stock price exposure

Procedia PDF Downloads 114
6513 Exploring Pisa Monuments Using Mobile Augmented Reality

Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino

Abstract:

Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.

Keywords: augmented reality, electronic compass, GPS, location-based service

Procedia PDF Downloads 289
6512 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 153
6511 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 272
6510 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 37
6509 Optimization Query Image Using Search Relevance Re-Ranking Process

Authors: T. G. Asmitha Chandini

Abstract:

Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking.

Keywords: Query, keyword, image, re-ranking, semantic, signature

Procedia PDF Downloads 555
6508 From Clients to Colleagues: Supporting the Professional Development of Survivor Social Work Students

Authors: Stephanie Jo Marchese

Abstract:

This oral presentation is a reflective piece regarding current social work teaching methods that value and devalue the lived experiences of survivor students. This presentation grounds the term ‘survivor’ in feminist frameworks. A survivor-defined approach to feminist advocacy assumes an individual’s agency, considers each case and needs independent of generalizations, and provides resources and support to empower victims. Feminist ideologies are ripe arenas to update and influence the rapport-building schools of social work have with these students. Survivor-based frameworks are rooted in nuanced understandings of intersectional realities, staunchly combat both conscious and unconscious deficit lenses wielded against victims, elevate lived experiences to the realm of experiential expertise, and offer alternatives to traditional power structures and knowledge exchanges. Actively importing a survivor framework into the methodology of social work teaching breaks open barriers many survivor students have faced in institutional settings, this author included. The profession of social work is at an important crux of change, both in the United States and globally. The United States is currently undergoing a radical change in its citizenry and outlier communities have taken to the streets again in opposition to their othered-ness. New waves of students are entering this field, emboldened by their survival of personal and systemic oppressions- heavily influenced by third-wave feminism, critical race theory, queer theory, among other post-structuralist ideologies. Traditional models of sociological and psychological studies are actively being challenged. The profession of social work was not founded on the diagnosis of disorders but rather a grassroots-level activism that heralded and demanded resources for oppressed communities. Institutional and classroom acceptance and celebration of survivor narratives can catapult the resurgence of these values needed in the profession’s service-delivery models and put social workers back in the driver's seat of social change (a combined advocacy and policy perspective), moving away from outsider-based intervention models. Survivor students should be viewed as agents of change, not solely former victims and clients. The ideas of this presentation proposal are supported through various qualitative interviews, as well as reviews of ‘best practices’ in the field of education that incorporate feminist methods of inclusion and empowerment. Curriculum and policy recommendations are also offered.

Keywords: deficit lens bias, empowerment theory, feminist praxis, inclusive teaching models, strengths-based approaches, social work teaching methods

Procedia PDF Downloads 292
6507 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 95