Search results for: wheat starch
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 686

Search results for: wheat starch

356 Potential Application of Artocarpus odoratisimmus Seed Flour in Bread Production

Authors: Hasmadi Mamat, Noorfarahzilah Masri

Abstract:

The search for lesser known and underutilized crops, many of which are potentially valuable as human and animal foods has been the focus of research in recent years. Tarap (Artocarpus odoratisimmus) is one of the most delicious tropical fruit and can be found extensively in Borneo, particularly in Sabah and Sarawak. This study was conducted in order to determine the proximate composition, mineral contents as well as to study the effect of the seed flour on the quality of bread produced. Tarap seed powder (TSP) was incorporated (up to 20%) with wheat flour and used to produce bread. The moisture content, ash, protein, fat, ash, carbohydrates, and dietary fiber were measured using AOAC methods while the mineral content was determined using AAS. The effect of substitution of wheat flour with Tarap seed flour on the quality of dough and bread was investigated using various techniques. Farinograph tests were applied to determine the effect of seaweed powder on the rheological properties of wheat flour dough, while texture profile analysis (TPA) was used to measure the textural properties of the final product. Besides that sensory evaluations were also conducted. On a dry weight basis, the TSP was composed of 12.50% moisture, 8.78% protein, 15.60% fat, 1.17% ash, 49.65% carbohydrate and 12.30% of crude fiber. The highest mineral found were Mg, followed by K, Ca, Fe and Na respectively. Farinograh results found that as TSP percentage increased, dough consistency, water absorption capacity and development time of dough decreased. Sensory analysis results showed that bread with 10% of TSP was the most accepted by panelists where the highest acceptability score were found for aroma, taste, colour, crumb texture as well as overall acceptance. The breads with more than 10% of TSP obtained lower acceptability score in most of attributes tested.

Keywords: tarap seed, proximate analysis, bread, sensory evaluation

Procedia PDF Downloads 183
355 Genetic Diversity Analysis in Triticum Aestivum Using Microsatellite Markers

Authors: Prachi Sharma, Mukesh Kumar Rana

Abstract:

In the present study, the simple sequence repeat(SSR) markers have been used in analysis of genetic diversity of 37 genotypes of Triticum aestivum. The DNA was extracted using cTAB method. The DNA was quantified using the fluorimeter. The annealing temperatures for 27 primer pairs were standardized using gradient PCR, out of which 16 primers gave satisfactory amplification at temperature ranging from 50-62⁰ C. Out of 16 polymorphic SSR markers only 10 SSR primer pairs were used in the study generating 34 reproducible amplicons among 37 genotypes out of which 30 were polymorphic. Primer pairs Xgwm533, Xgwm 160, Xgwm 408, Xgwm 120, Xgwm 186, Xgwm 261 produced maximum percent of polymorphic bands (100%). The bands ranged on an average of 3.4 bands per primer. The genetic relationship was determined using Jaccard pair wise similarity co-efficient and UPGMA cluster analysis with NTSYS Pc.2 software. The values of similarity index range from 0-1. The similarity coefficient ranged from 0.13 to 0.97. A minimum genetic similarity (0.13) was observed between VL 804 and HPW 288, meaning they are only 13% similar. More number of available SSR markers can be useful for supporting the genetic diversity analysis in the above wheat genotypes.

Keywords: wheat, genetic diversity, microsatellite, polymorphism

Procedia PDF Downloads 615
354 Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria

Authors: Jayanwita Sarkar, Usha Chakraborty, Bishwanath Chakraborty

Abstract:

Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants.

Keywords: antioxidative enzymes, defense enzymes, elevated temperature, heat shock proteins, PGPR, Real-Time PCR, spot blotch, wheat

Procedia PDF Downloads 172
353 Screening of Different Exotic Varieties of Potato through Adaptability Trial for Local Cultivation

Authors: Arslan Shehroz, Muhammad Amjad Ali, Amjad Abbas, Imran Ramzan, Muhammad Zunair Latif

Abstract:

Potato (Solanum tuberosum L.) is the 4th most important food crop of the world after wheat, rice and maize. It is the staple food in many European countries. Being rich in starch (one of the main three food ingredients) and having the highest productivity per unit area, has great potential to address the challenge of the food security. Processed potato is also used as chips and crisps etc as ‘fast food’. There are many biotic and abiotic factors which check the production of potato and become hurdle in achievement production potential of potato. 20 new varieties along with two checks were evaluated. Plant to plant and row to row distances were maintained as 20 cm and 75 cm, respectively. The trial was conducted according to the randomized complete block design with three replications. Normal agronomic and plant protection measures were carried out in the crop. It is revealed from the experiment that exotic variety 171 gave the highest yield of 35.5 t/ha followed by Masai with 31.0 t/ha tuber yield. The check variety Simply Red 24.2 t/ha yield, while the lowest tuber yield (1.5 t/ha) was produced by the exotic variety KWS-06-125. The maximum emergence was shown by the Variety Red Sun (89.7 %). The lowest emergence was shown by the variety Camel (71.7%). Regarding tuber grades, it was noted that the maximum Ration size tubers were produced by the exotic variety Compass (3.7%), whereas 11 varieties did not produce ration size tubers at all. The variety Red Sun produced lowest percentage of small size tubers (12.7%) whereas maximum small size tubers (93.0%) were produced by the variety Jitka. Regarding disease infestation, it was noted that the maximum scab incidence (4.0%) was recorded on the variety Masai, maximum rhizoctonia attack (60.0%) was recorded on the variety Camel and maximum tuber cracking (0.7%) was noted on the variety Vendulla.

Keywords: check variety, potato, potential and yield, trial

Procedia PDF Downloads 378
352 Macronutrient Accumulation and Partitioning for Six Wheat Genotypes Grown at Contrasting Nitrogen Supply

Authors: E. Chakwizira, D. J. Moot, M. Andrews, E. Teixeira

Abstract:

Partitioning of macro-nutrients in wheat (Triticum aestivum L.) plant organs have not been extensively studied, particularly for modern genotypes grown under contrasting N supply. Nutrient accumulation and partitioning of phosphorus, potassium, calcium, magnesium and sulphur (P, K, Ca, Mg and S) were determined for six wheat genotypes [12S2-2021, 12S3-3019, 13S3-2026, Discovery, Duchess and Reliance] grown with (200 kg/ha) or without (0 kg/ha) nitrogen (N), in a fully irrigated field experiment in 2017-18 season at Lincoln, New Zealand. Data were collected at three growth stages (GS): tillering (GS21), anthesis (GS60) and grain maturity (GS92). Grain yield varied with both N and genotype; from 6-7.5 t/ha for the 0 kg N/ha crops and 8.1-9.3 t/ha for the 200 kg N/ha treatments. Plant nutrient uptake at maturity responded to both N supply and genotype for all nutrients, except S which did not differ among the genotypes. For example, total P uptake averaged 13.5 (12.4-14.3) kg/ha for the 0 kg N/ha treatments and 17.8 (15.1-19.7) kg/ha when 200 kg N/ha was applied. Similarly, K uptake increased from an average of 23 (21.6-25.3) for the 0 kg N/ha treatments to 34.3 (32.4-40.8) kg/ha when 200 kg N/ha was applied. Similar trends were observed for Ca and Mg. The S content only responded to N supply but not to genotype, increasing from 7.9 kg/ha for the 0 kg N treatments to 12.8 kg/ha when 200 kg N was applied. Relative nutrient content at anthesis compared with those at maturity were 30% for P, 100% for both K and Ca and 34% of Mg. Sulphur content at anthesis decreased 29% with N supply and was highest for genotypes 12S2-2021 compared with the other five genotype. At grain maturity, the ratio of nutrients in grain to total plant nutrient, defined as the nutrient harvest index (NHI) varied with both N supply and genotype. Averaged across treatments, the NHI was 0.96 for P, 0.53 for K, 0.58 for Ca, 0.90 for Mg and 0.85 for S. These results suggest that Ca and K should be provided earlier in the season as there is limited or no uptake after anthesis. These results also show that Ca and K are important for structural functions, while P, Mg and S are remobilised to the grains and become important for quality.

Keywords: anthesis, genotype, nutrient harvests index, NHI, Triticum aestivum L.

Procedia PDF Downloads 165
351 Field Efficacy Evaluation and Synergistic Effect of Two Rodenticides Zinc Phosphide and Brodifacoum against Field Rats of the Pothwar Region, Pakistan

Authors: Nadeem Munawar, David Galbraith, Tariq Mahmood

Abstract:

Rodenticides are often included as part of an integrated pest management approach for managing rodent species since they are relatively quick and inexpensive to apply. The current field study was conducted to evaluate the effectiveness of formulated baits of zinc phosphide (2%) and the second generation anticoagulant brodifacoum (0.005%) against field rats inhabiting a wheat-groundnut cropping system. Burrow baiting was initiated at the early flowering stages of the respective crops, and continued through three growth stages (tillering / peg formation, flowering, and maturity). Three treatments were done at equal time intervals, with the final baiting being about 2 weeks before harvest. Treatment efficacy of the trials was assessed through counts of active rodent burrows before and after treatments at the three growth stages of these crops. The results indicated variable degrees of reduction in burrow activities following the three bait applications. The reductions in rodent activity in wheat were: 88.8% (at tillering), 92%, (at flowering/grain formation), and 95.5% (at maturity). In groundnut, the rodent activities were reduced by 91.8%, 93.5% and 95.8% at sowing, peg formation, and maturity stages, respectively. The estimated mortality at all three growth stages of both wheat and groundnut ranged between 60-85%. We recommend that a field efficacy study should be conducted with zinc phosphide and brodifacoum bait formulations to determine their field performance in the reduction of agricultural damage by rodent pest species. It is a promising alternative approach for use of the most potent second-generation anticoagulant (brodifacoum) in resistance management, particularly with respect to reducing environmental risks and secondary poisoning.

Keywords: brodifacoum, burrow baiting, second-generation anticoagulant, synergistic effect

Procedia PDF Downloads 124
350 Information Needs of Cassava Processors on Small-Scale Cassava Processing in Oyo State, Nigeria

Authors: Rafiat Bolanle Fasasi-Hammed

Abstract:

Cassava is an important food crop in rural households of Nigeria. It has a high potential for product diversification, because it can be processed into various products forms for human consumption and can be made into chips for farm animals, and also starch and starch derivatives. However, cassava roots are highly perishable and contain potentially toxic cyanogenic glycosides which necessitate its processing. Therefore, this study was carried out to assess information needs of cassava processors on food safety practices in Oyo State, Nigeria. Simple random sampling technique was used in the selection of 110 respondents for this study. Descriptive statistics and chi-square were used to analyze the data collected. Results of this study showed that the mean age of the respondents was 39.4 years, majority (78.7%) of the respondents was married, 51.9% had secondary education; 45.8% of the respondents have spent more than 12 years in cassava processing. The mean income realized was ₦26,347.50/month from cassava processing. Information on cassava processing got to the respondents through friends, family and relations (73.6%) and fellow cassava processors (58.6%). Serious constraints identified were ineffective extension agents (93.9%), food safety regulatory agencies (88.1%) and inadequate processing and storage facilities (67.8%). Chi-square results showed that significant relationship existed between socio-economic characteristics of the respondents (χ2 = 29.80, df = 2,), knowledge level (χ2 = 9.26, df = 4), constraints (χ2 = 13.11, df = 2) and information needs at p < 0.05 level of significance. The study recommends that there should be regular training on improved cassava processing methods for the cassava processors in the study area.

Keywords: information, needs, cassava, Oyo State, processing

Procedia PDF Downloads 302
349 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat

Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar

Abstract:

One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.

Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency

Procedia PDF Downloads 250
348 Processing, Nutritional Assessment and Sensory Evaluation of Bakery Products Prepared from Orange Fleshed Sweet Potatoes (OFSP) and Wheat Composite Flours

Authors: Hategekimana Jean Paul, Irakoze Josiane, Ishimweyizerwe Valentin, Iradukunda Dieudonne, Uwanyirigira Jeannette

Abstract:

Orange fleshed sweet potatoes (OFSP) are highly grown and are available plenty in rural and urban local markets and its contribution in reduction of food insecurity in Rwanda is considerable. But the postharvest loss of this commodity is a critical challenge due to its high perishability. Several research activities have been conducted on how fresh food commodities can be transformed into extended shelf life food products for prevention of post-harvest losses. However, such activity was not yet well studied in Rwanda. The aim of the present study was the processing of backed products from (OFSP)combined with wheat composite flour and assess the nutritional content and consumer acceptability of new developed products. The perishability of OFSP and their related lack during off season can be eradicated by producing cake, doughnut and bread with OFSP puree or flour. The processing for doughnut and bread were made by making OFSP puree and other ingredients then a dough was made followed by frying and baking while for cake OFSP was dried through solar dryer to have a flour together with wheat flour and other ingredients to make dough cake and baking. For each product, one control and three experimental samples, (three products in three different ratios (30,40 and50%) of OFSP and the remaining percentage of wheat flour) were prepared. All samples including the control were analyzed for the consumer acceptability (sensory attributes). Most preferred samples (One sample for each product with its control sample and for each OFSP variety) were analyzed for nutritional composition along with control sample. The Cake from Terimbere variety and Bread from Gihingumukungu supplemented with 50% OFSP flour or Puree respectively were most acceptable except Doughnut from Vita variety which was highly accepted at 50% of OFSP supplementation. The moisture, ash, protein, fat, fiber, Total carbohydrate, Vitamin C, reducing sugar and minerals (Sodium, Potassium and Phosphorus.) content was different among products. Cake was rich in fibers (14.71%), protein (6.590%), and vitamin c(19.988mg/100g) compared to other samples while bread found to be rich in reducing sugar with 12.71mg/100g compared to cake and doughnut. Also doughnut was found to be rich in fat content with 6.89% compared to other samples. For sensory analysis, doughnut was highly accepted in ratio of 60:40 compared to other products while cake was least accepted at ratio of 50:50. The Proximate composition and minerals content of all the OFSP products were significantly higher as compared to the control samples.

Keywords: post-harvest loss, OFSP products, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 62
347 Impact of Sunflower Oil Supplemented Diet on Performance and Hematological Stress Indicators of Growing-Finishing Pigs Exposed to Hot Environment

Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara Duarte Borges, Antoni D. Bueno, Leandro Batista Costa

Abstract:

As homeothermic animals, pigs manifest maximum performance when kept at comfortable temperature levels, represented by a limit where thermoregulatory processes are minimal (18 - 20°C). In a stress situation where it will have a higher energy demand for thermal maintenance, the energy contribution to the productive functions will be reduced, generating health imbalances, drop in productive rates and welfare problems. The hypothesis of this project is that 5% starch replacement per 5% sunflower oil (SO), in growing and finishing pig’s diet (Iberic x Duroc), is effective as a nutritional strategy to reduce the negative impacts of thermal stress on performance and animal welfare. Seventy-two crossbred males (51± 6,29 kg body weight- BW) were housed according to the initial BW, in climate-controlled rooms, in collective pens, and exposed to heat stress conditions (30 - 32°C; 35% to 50% humidity). The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). The treatments studied were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed was provided in two phases, 50–100 Kg BW for growing and 100-140 Kg BW for finishing period, respectively. Hematological, biochemical and growth performance parameters were evaluated on all animals at the beginning of the environmental treatment, on the transition of feed (growing to finishing) and in the final of experiment. After the experimental period, when animals reached a live weight of 130-140 kg, they were slaughtered by carbon dioxide (CO2) stunning. Data have shown for the growing phase no statistical interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on animal performance. At finishing phase, pigs fed with SO diet with restriction feed intake had the same average daily gain (ADG) compared with pigs in control diet with ad libitum feed intake. Furthermore, animals fed with the same diet (SO), presented a better feed gain (p < 0,05) due to feed intake reduce (p < 0,05) when compared with control group. To hematological and biochemical parameters, animals under heat stress had an increase in hematocrit, corpuscular volume, urea concentration, creatinine, calcium, alanine aminotransferase and aspartate aminotransferase (p < 0,05) when compared with the beginning of experiment. These parameters were efficient to characterize the heat stress, although the experimental treatments were not able to reduce the hematological and biochemical stress indicators. In addition, the inclusion of SO on pig diets improve feed gain in pigs at finishing phase, even with restriction feed intake.

Keywords: hematological, performance, pigs, welfare

Procedia PDF Downloads 281
346 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet

Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez

Abstract:

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.

Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles

Procedia PDF Downloads 39
345 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 384
344 Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging

Authors: Amin Abbasi, Fariborz Shekari, Seyed Bahman Mousavi

Abstract:

Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming.

Keywords: hormones priming, wheat, aging seed, antioxidant, lipid peroxidation

Procedia PDF Downloads 498
343 Polysorb®-A Versatile Monomer for Improving Thermoplastics and Thermosetting Properties: Case Study of Polyesters

Authors: R. Saint-Loup, H. Amedro, N. Jacquel, S. Legrand, F. Fenouillot, J. P. Pascault, A. Rousseau

Abstract:

Isosorbide or 1,4-3,6 dianhydrohexitol has been developped for several years as a new biobased monomer. It is commercially available as a starch derivative, more precisely obtained derivated from starch and more precisely from sorbitol. Isosorbide can find several applications, directly as a monomer or after chemical modification, in different polymer fields like thermoplastics (obtained from polycondensation or from radical polymerization of unsaturated monomers) or like Thermosetting resins (like cross linked PU, or after modification like acrylates or epoxy coatings) Concerning aliphatic or semi-aromatic polyesters, the addition of isosorbide improves thermal stability an,d optical properties, allowing a large range of applications as semi-crystalline or amorphous polymers. The preparation of poly (ethylene-co-isosorbide) terephthalate with different ratios of isosorbide will be particularly detailed. The structure – properties relationship will permit a focus on the obtention of polyesters with semi-crystalline or amorphous structures. The influence of isosorbide on the polymerization, on the processing of the resulting polyester as well as the modification of the final properties will be enlightened. The properties of Poly (ethylene-co-isosorbide) terephthlate will be emphasized and related to their applications. The evolutions related to Isosorbide with the replacement of ethylene glycol by Cyclohexanedimethanol allowed to drastically change the properties of the resulting polyester, with a large gap on the properties and new potential applications.

Keywords: modified PET, poly(ethylene-co-isosorbide)terephthalate, specialy polyester, poly(isosorbide_co_cyclohexanediol)terephthalate

Procedia PDF Downloads 73
342 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin

Authors: Emma R. Arakelova, Stepan G. Grigoryan, Flora G. Arsenyan, Nelli S. Babayan, Ruzanna M. Grigoryan, Natalia K. Sarkisyan

Abstract:

Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy.

Keywords: anticancer activity, cancer specificity, doxorubicin, zinc oxide

Procedia PDF Downloads 412
341 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)

Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang

Abstract:

The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.

Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes

Procedia PDF Downloads 54
340 Seed Yield and Quality of Late Planted Rabi Wheat Crop as Influenced by Basal and Foliar Application of Urea

Authors: Omvati Verma, Shyamashrre Roy

Abstract:

A field experiment was conducted with three basal nitrogen levels (90, 120 and 150 kg N/ha) and five foliar application of urea (absolute control, water spray, 3% urea spray at anthesis, 7 and 14 days after anthesis) at G.B. Pant University of Agriculture & Technology, Pantnagar, U.S. Nagar (Uttarakhand) during rabi season in a factorial randomized block design with three replications. Results revealed that nitrogen application of 150 kg/ha produced the highest seed yield, straw and biological yield and it was significantly superior to 90 kg N/ha and was at par with 120 kg N/ha. The number of tillers increased significantly with increase in nitrogen doses up to 150 kg N/ha. Spike length, number of grains per spike, grain weight per spike and thousand seed weight showed significantly higher values with 120 kg N/ha than 90 kg N/ha and were at par with that of 150 kg N/ha. Also, plant height showed similar trend. Leaf area index and chlorophyll content showed significant increase with an increase in nitrogen levels at different stages. In the case of foliar spray treatments, urea spray at anthesis showed highest value for yield and yield attributes. In case of spike length and thousand seed weight, it was similar with the urea spray at 7 and 14 days after anthesis, but for rest of the yield attributes, it was significantly higher than rest of the treatments. Among seed quality parameters protein and sedimentation value showed significant increase due to increase in nitrogen rates whereas, starch and hectolitre weight had a decreasing trend. Wet gluten content was not influenced by nitrogen levels. Foliar urea spray at anthesis resulted in highest value of protein and hectolitre weight whereas, urea spray at 7 days after anthesis showed highest value of sedimentation value and wet gluten content.

Keywords: foliar application, nitrogenous fertilizer, seed quality, yield

Procedia PDF Downloads 280
339 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB

Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo

Abstract:

Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.

Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase

Procedia PDF Downloads 448
338 Evaluation of Existing Wheat Genotypes of Bangladesh in Response to Salinity

Authors: Jahangir Alam, Ayman El Sabagh, Kamrul Hasan, Shafiqul Islam Sikdar, Celaleddin Barutçular, Sohidul Islam

Abstract:

The experiment (Germination test and seedling growth) was carried out at the laboratory of Agronomy Department, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh during January 2014. Germination and seedling growth of 22 existing wheat genotypes in Bangladesh viz. Kheri, Kalyansona, Sonora, Sonalika, Pavon, Kanchan, Akbar, Barkat, Aghrani, Prativa, Sourab, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom 25, BARI Gom 26, BARI Gom 27, BARI Gom 28, Durum and Triticale were tested with three salinity levels (0, 100 and 200 mM NaCl) for 10 days in sand culture in small plastic pot. Speed of germination as expressed by germination percentage (GP), rate of germination (GR), germination coefficient (GC) and germination vigor index (GVI) of all wheat genotypes was delayed and germination percentage was reduced due to salinization compared to control. The lower reduction of GP, GR, GC and VI due to salinity was observed in BARI Gom 25, BARI Gom 27, Shatabdi, Sonora, and Akbbar and higher reduction was recorded in BARI Gom 26, Duram, Triticale, Sufi and Kheri. Shoot and root lengths, fresh and dry weights were found to be affected due to salinization and shoot was more affected than root. Under saline conditions, longer shoot and root length were recorded in BARI Gom 25, BARI Gom 27, Akbar, and Shatabdi, i.e. less reduction of shoot and root lengths was observed while, BARI Gom 26, Duram, Prodip and Triticale produced shorted shoot and root lengths. In this study, genotypes BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed better performance in terms shoot and root growth (fresh and dry weights) and proved to be tolerant genotypes to salinity. On the other hand, Duram, BARI Gom 26, Triticale, Kheri and Prodip affected seriously in terms of fresh and dry weights by the saline environment. BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed more salt tolerance index (STI) based on shoot dry weight while, BARI Gom 26, Triticale, Durum, Sufi, Prodip and Kalyanson demonstrate lower STI value under saline conditions. Based on the most salt tolerance and susceptible trait, genotypes under 100 and 200 mM NaCl stresses can be arranged as salt tolerance genotypes: BARI Gom 25> BARI Gom 27> Shatabdi> Sonora, and salt susceptible genotypes: BARI Gom 26> Durum> Triticale> Prodip> Sufi> Kheri. Considering the experiment, it can be concluded that the BARI Gom 25 may be treated as the most salt tolerant and BARI Gom 26 as the most salt sensitive genotypes in Bangladesh.

Keywords: genotypes, germination, salinity, wheat

Procedia PDF Downloads 308
337 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.

Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4

Procedia PDF Downloads 462
336 Isolation and Screening of Antagonistic Bacteria against Wheat Pathogenic Fungus Tilletia indica

Authors: Sugandha Asthana, Geetika Vajpayee, Pratibha Kumari, Shanthy Sundaram

Abstract:

An economically important disease of wheat in North Western region of India is Karnal Bunt caused by smut fungus Tilletia indica. This fungal pathogen spreads by air, soil and seed borne sporodia at the time of flowering, which ultimately leads to partial bunting of wheat kernels with fishy odor and taste to wheat flour. It has very serious effects due to quarantine measures which have to be applied for grain exports. Chemical fungicides such as mercurial compounds and Propiconazole applied to the control of Karnal bunt have been only partially successful. Considering the harmful effects of chemical fungicides on man as well as environment, many countries are developing biological control as the superior substitute to chemical control. Repeated use of fungicides can be responsible for the development of resistance in fungal pathogens against certain chemical compounds. The present investigation is based on the isolation and evaluation of antifungal properties of some isolated (from natural manure) and commercial bacterial strains against Tilletia indica. Total 23 bacterial isolates were obtained and antagonistic activity of all isolates and commercial bacterial strains (Bacillus subtilis MTCC8601, Bacillus pumilus MTCC 8743, Pseudomonas aeruginosa) were tested against T. indica by dual culture plate assay (pour plate and streak plate). Test for the production of antifungal volatile organic compounds (VOCs) by antagonistic bacteria was done by sealed plate method. Amongst all s1, s3, s5, and B. subtilis showed more than 80% inhibition. Production of extracellular hydrolytic enzymes such as protease, beta 1, 4 glucanase, HCN and ammonia was studied for confirmation of antifungal activity. s1, s3, s5 and B. subtilis were found to be the best for protease activity and s5 and B. subtilis for beta 1, 4 glucanase activity. Bacillus subtilis was significantly effective for HCN whereas s3, s5 and Bacillus subtilis for ammonia production. Isolates were identified as Pseudomonas aeruginosa (s1) and B. licheniformis (s3, s5) by various biochemical assays and confirmed by16s rRNA sequencing. Use of microorganisms or their secretions as biocontrol agents to avoid plant diseases is ecologically safe and may offer long term of protection to crop. The above study reports the promising effects of these strains in better pathogen free crop production and quality maintenance as well as prevention of the excessive use of synthetic fungicides.

Keywords: antagonistic, antifungal, biocontrol, Karnal bunt

Procedia PDF Downloads 285
335 Protective Effect of Wheat Grass (Triticum Durum) against Oxidative Damage Induced by Lead: Study of Some Biomarkers and Histological Few Organs in Males Wistar Rats

Authors: Mansouri Ouarda, Abdennour Cherif, Saidi Malika

Abstract:

Since the industrial revolution, many anthropogenic activities have caused environmental, considerable and overall changes. The lead represents a very dangerous disruptive for the functioning of the body. In this context the current study aims at evaluating a natural therapy by the use of the plant grass in wheat (Triticum durum) against the toxicity of lead in rat wistar male. The rats were divided into three groups: the control group, the group treated with 600 mg /kg food of lead only (Pb) is the group treated with the combination of 600 mg/kg of food and 9g/rat /day of the plant grass in wheat (Pb-bl). The duration of the treatment is 6 weeks. The results of the biometrics of the organs (thyroid, kidney, testis and epididymis) show no significant difference between the three groups. The dosage of a few parameters and hormonal biochemical shows a decrease in the concentration of the hormone T3 and TSH levels among the group pb alone compared to the control and Pb-Bl. These results have been confirmed by the study of histological slices. A morphological changes represented by a shrinking volume of vesicles with the group treated with Pb alone. A return to the normal state of the structure of the follicles was observed. The concentration in serum testosterone, urea and creatinine was significantly increased among the group treated by Pb only in relation to the control and Pb-Bl. whereas the rate of glucose did not show any significant difference. The histology study of the kidney, testis and epididymal weights show no modification at the group Pb-bl comparing to the control. The parenchyma of the kidney shows a dilation of tubes distal and proximal causing a tubular nephropathy for the batch processed by Pb only. The testicles have marked a destruction or absence of germ cells and the light of some seminiferous are almost empty. Conclusion: The supplementation of the plant Triticum durum has caused a considerable improvement which ensures the return of parameters investigated in the normal state.

Keywords: creatinine, glucose, histological sections, T3, TSH, testosterone

Procedia PDF Downloads 381
334 Development and Emerging Risks in the Derivative Market: A Comparison of Impact of Futures Trading on Spot Price Volatility and a Case of Developed, Emerging and Less Developed Economies

Authors: Rancy Chepchirchir Kosgey, John Olukuru

Abstract:

This study examines the impact of introduction of futures trading on the spot price volatility in the commodity market. The paper considers the United States of America, South Africa and Ethiopian economies. Three commodities i.e. coffee, maize and wheat from New York Merchantile Exchange, South African Futures Exchange and Ethiopian Commodity Exchange are analyzed. ARCH LM test is used to check for heteroskedasticity and GARCH and EGARCH are used to check for the behavior of volatility between the pre- and post-futures periods. For all the three economies, the results indicate presence of the ARCH effect in the log returns. For conditional and unconditional variances; spot price volatility for coffee has decreased after futures trading in all the economies and the EGARCH has also shown reduction in persistence of volatility in the post-futures period in the three economies; while that of maize has reduced for the Ethiopian economy while there has been an increase in both the US and South African economies. For wheat, the conditional variance has been found to rise in the post-futures period in all the three economies.

Keywords: derivatives, futures exchange, agricultural commodities, spot price volatility

Procedia PDF Downloads 426
333 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use

Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat

Abstract:

The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.

Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields

Procedia PDF Downloads 132
332 Apatite Flotation Using Fruits' Oil as Collector and Sorghum as Depressant

Authors: Elenice Maria Schons Silva, Andre Carlos Silva

Abstract:

The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower.

Keywords: collectors, depressants, flotation, mineral processing

Procedia PDF Downloads 153
331 Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric

Authors: Serpa A. M., Gómez Hoyos C., Velásquez-Cock J. A., Ruiz L. F., Vélez Acosta L. M., Gañan P., Zuluaga R.

Abstract:

Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions.

Keywords: characterization, mechanical treatments, suspensions, turmeric rhizome

Procedia PDF Downloads 163
330 Rheological Properties and Consumer Acceptability of Supplemented with Flaxseed

Authors: A. Albaridi Najla

Abstract:

Flaxseed (Linum usitatissimum) is well known to have beneficial effect on health. The seeds are rich in protein, α-linolenic fatty acid and dietary fiber. Bakery products are important part of our daily meals. Functional food recently received considerable attention among consumers. The increase in bread daily consumption leads to the production of breads with functional ingredients such as flaxseed The aim of this Study was to improve the nutritional value of bread by adding flaxseed flour and assessing the effect of adding 0, 5, 10 and 15% flaxseed on whole wheat bread rheological and sensorial properties. The total consumer's acceptability of the flaxseed bread was assessed. Dough characteristics were determined using Farinograph (C.W. Brabender® Instruments, Inc). The result shows no change was observed in water absorption between the stander dough (without flaxseed) and the bread with flaxseed (67%). An Increase in the peak time and dough stickiness was observed with the increase in flaxseed level. Further, breads were evaluated for sensory parameters, colour and texture. High flaxseed level increased the bread crumb softness. Bread with 5% flaxseed was optimized for total sensory evaluation. Overall, flaxseed bread produced in this study was highly acceptable for daily consumption as a functional foods with a potentially health benefits.

Keywords: bread, flaxseed, rheological properties, whole-wheat bread

Procedia PDF Downloads 435
329 Optimal Evaluation of Weather Risk Insurance for Wheat

Authors: Slim Amami

Abstract:

A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, database, meteorological factors, production model, optimal price

Procedia PDF Downloads 222
328 Okara-Chickpea Fettuccine Pasta: Physico-chemical, Sensory Properties, and Cooking Quality Characterization

Authors: Elvira Cabadsan-Labartine

Abstract:

This study aimed to develop alternative and healthy fettuccine pasta using okara, chickpea flour, and vital wheat gluten blends. The effect of formulations on cooking quality, sensory properties, and physico-chemical characteristics was investigated using a mixture design. The levels of okara flour increase the cooking time, water absorption index, protein content, and dietary fiber while decreasing cooking loss. Dough formation exhibited up to 20% okara flour and peaked at 132 percent. The physico-chemical properties and microbiological results of chickpea-okara pasta were all within the acceptable range of the standards. The results show that the amount of protein and fiber also greatly affected the cooking qualities of pasta. The least okara flour in the mixture blends obtained the highest score in the affective sensory evaluation regarding color, appearance, and texture properties. Results showed that okara flour can be incorporated in the formulation up to 15%. These findings show that okara-chickpea flour and vital wheat gluten have a high nutritional value, making them a viable ingredient in pasta products.

Keywords: okara flour, fettucine pasta, cooking and sensory characteristics, dough yield

Procedia PDF Downloads 6
327 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice

Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet

Abstract:

The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.

Keywords: semolina, gluten, celiac disease, wheat allergies

Procedia PDF Downloads 106