Search results for: warning labels
69 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation
Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos
Abstract:
The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.Keywords: air pollution, passive samplers, interferometry, indoor, outdoor
Procedia PDF Downloads 39868 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 7367 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation
Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy
Abstract:
A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.Keywords: cognitive activity, EEG, machine learning, personalized recovery
Procedia PDF Downloads 22066 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area
Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi
Abstract:
Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining
Procedia PDF Downloads 9065 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49064 Consumer Knowledge and Behavior in the Aspect of Food Waste
Authors: Katarzyna Neffe-Skocinska, Marzena Tomaszewska, Beata Bilska, Dorota Zielinska, Monika Trzaskowska, Anna Lepecka, Danuta Kolozyn-Krajewska
Abstract:
The aim of the study was to assess Polish consumer behavior towards food waste, including knowledge of information on food labels. The survey was carried out using the CAPI (computer assisted personal interview) method, which involves interviewing the respondent using mobile devices. The research group was a representative sample for Poland due to demographic variables: gender, age, place of residence. A total of 1.115 respondents participated in the study (51.1% were women and 48.9% were men). The questionnaire included questions on five thematic aspects: 1. General knowledge and sources of information on the phenomenon of food waste; 2. Consumption of food after the date of minimum durability; 3. The meanings of the phrase 'best before ...'; 4. Indication of the difference between the meaning of the words 'best before ...' and 'use by'; 5. Indications products marked with the phrase 'best before ...'. It was found that every second surveyed Pole met with the topic of food waste (54.8%). Among the respondents, the most popular source of information related to the research topic was television (89.4%), radio (26%) and the Internet (24%). Over a third of respondents declared that they consume food after the date of minimum durability. Only every tenth (9.8%) respondent does not pay attention to the expiry date and type of consumed products (durable and perishable products). Correctly 39.8% of respondents answered the question: How do you understand the phrase 'best before ...'? In the opinion of 42.8% of respondents, the statements 'best before ...' and 'use by' mean the same thing, while 36% of them think differently. In addition, more than one-fifth of respondents could not respond to the questions. In the case of products of the indication information 'best before ...', more than 40% of the respondents chosen perishable products, e.g., yoghurts and durable, e.g., groats. A slightly lower percentage of indications was recorded for flour (35.1%), sausage (32.8%), canned corn (31.8%), and eggs (25.0%). Based on the assessment of the behavior of Polish consumers towards the phenomenon of food waste, it can be concluded that respondents have elementary knowledge of the study subject. Noteworthy is the good conduct of most respondents in terms of compliance with shelf life and dates of minimum durability of food products. The publication was financed on the basis of an agreement with the National Center for Research and Development No. Gospostrateg 1/385753/1/NCBR/2018 for the implementation and financing of the project under the strategic research and development program social and economic development of Poland in the conditions of globalizing markets – GOSPOSTRATEG - acronym PROM.Keywords: food waste, shelf life, dates of durability, consumer knowledge and behavior
Procedia PDF Downloads 17463 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 15562 Societal Resilience Assessment in the Context of Critical Infrastructure Protection
Authors: Hannah Rosenqvist, Fanny Guay
Abstract:
Critical infrastructure protection has been an important topic for several years. Programmes such as the European Programme for Critical Infrastructure Protection (EPCIP), Critical Infrastructure Warning Information Network (CIWIN) and the European Reference Network for Critical Infrastructure Protection (ENR-CIP) have been the pillars to the work done since 2006. However, measuring critical infrastructure resilience has not been an easy task. This has to do with the fact that the concept of resilience has several definitions and is applied in different domains such as engineering and social sciences. Since June 2015, the EU project IMPROVER has been focusing on developing a methodology for implementing a combination of societal, organizational and technological resilience concepts, in the hope to increase critical infrastructure resilience. For this paper, we performed research on how to include societal resilience as a form of measurement of the context of critical infrastructure resilience. Because one of the main purposes of critical infrastructure (CI) is to deliver services to the society, we believe that societal resilience is an important factor that should be considered when assessing the overall CI resilience. We found that existing methods for CI resilience assessment focus mainly on technical aspects and therefore that is was necessary to develop a resilience model that take social factors into account. The model developed within the project IMPROVER aims to include the community’s expectations of infrastructure operators as well as information sharing with the public and planning processes. By considering such aspects, the IMPROVER framework not only helps operators to increase the resilience of their infrastructures on the technical or organizational side, but aims to strengthen community resilience as a whole. This will further be achieved by taking interdependencies between critical infrastructures into consideration. The knowledge gained during this project will enrich current European policies and practices for improved disaster risk management. The framework for societal resilience analysis is based on three dimensions for societal resilience; coping capacity, adaptive capacity and transformative capacity which are capacities that have been recognized throughout a widespread literature review in the field. A set of indicators have been defined that describe a community’s maturity within these resilience dimensions. Further, the indicators are categorized into six community assets that need to be accessible and utilized in such a way that they allow responding to changes and unforeseen circumstances. We conclude that the societal resilience model developed within the project IMPROVER can give a good indication of the level of societal resilience to critical infrastructure operators.Keywords: community resilience, critical infrastructure protection, critical infrastructure resilience, societal resilience
Procedia PDF Downloads 23061 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 9260 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 9359 Skin-Dose Mapping for Patients Undergoing Interventional Radiology Procedures: Clinical Experimentations versus a Mathematical Model
Authors: Aya Al Masri, Stefaan Carpentier, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis and ulceration to appear. In order to prevent these deterministic effects, an accurate calculation of the patient skin-dose mapping is essential. For most machines, the 'Dose Area Product (DAP)' and fluoroscopy time are the only information available for the operator. These two parameters are a very poor indicator of the peak skin dose. We developed a mathematical model that reconstructs the magnitude (delivered dose), shape, and localization of each irradiation field on the patient skin. In case of critical dose exceeding, the system generates warning alerts. We present the results of its comparison with clinical studies. Materials and methods: Two series of comparison of the skin-dose mapping of our mathematical model with clinical studies were performed: 1. At a first time, clinical tests were performed on patient phantoms. Gafchromic films were placed on the table of the IR machine under of PMMA plates (thickness = 20 cm) that simulate the patient. After irradiation, the film darkening is proportional to the radiation dose received by the patient's back and reflects the shape of the X-ray field. After film scanning and analysis, the exact dose value can be obtained at each point of the mapping. Four experimentation were performed, constituting a total of 34 acquisition incidences including all possible exposure configurations. 2. At a second time, clinical trials were launched on real patients during real 'Chronic Total Occlusion (CTO)' procedures for a total of 80 cases. Gafchromic films were placed at the back of patients. We performed comparisons on the dose values, as well as the distribution, and the shape of irradiation fields between the skin dose mapping of our mathematical model and Gafchromic films. Results: The comparison between the dose values shows a difference less than 15%. Moreover, our model shows a very good geometric accuracy: all fields have the same shape, size and location (uncertainty < 5%). Conclusion: This study shows that our model is a reliable tool to warn physicians when a high radiation dose is reached. Thus, deterministic effects can be avoided.Keywords: clinical experimentation, interventional radiology, mathematical model, patient's skin-dose mapping.
Procedia PDF Downloads 14058 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 16057 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 15456 Alternate Approaches to Quality Measurement: An Exploratory Study in Differentiation of “Quality” Characteristics in Services and Supports
Authors: Caitlin Bailey, Marian Frattarola Saulino, Beth Steinberg
Abstract:
Today, virtually all programs offered to people with intellectual and developmental disabilities tout themselves as person-centered, community-based and inclusive, yet there is a vast range in type and quality of services that use these similar descriptors. The issue is exacerbated by the fields’ measurement practices around quality, inclusion, independent living, choice and person-centered outcomes. For instance, community inclusion for people with disabilities is often measured by the number of times person steps into his or her community. These measurement approaches set standards for quality too low so that agencies supporting group home residents to go bowling every week can report the same outcomes as an agency that supports one person to join a book club that includes people based on their literary interests rather than disability labels. Ultimately, lack of delineation in measurement contributes to the confusion between face value “quality” and true quality services and supports for many people with disabilities and their families. This exploratory study adopts alternative approaches to quality measurement including co-production methods and systems theoretical framework in order to identify the factors that 1) lead to high-quality supports and, 2) differentiate high-quality services. Project researchers have partnered with community practitioners who are all committed to providing quality services and supports but vary in the degree to which they are actually able to provide them. The study includes two parts; first, an online survey distributed to more than 500 agencies that have demonstrated commitment to providing high-quality services; and second, four in-depth case studies with agencies in three United States and Israel providing a variety of supports to children and adults with disabilities. Results from both the survey and in-depth case studies were thematically analyzed and coded. Results show that there are specific factors that differentiate service quality; however meaningful quality measurement practices also require that researchers explore the contextual factors that contribute to quality. These not only include direct services and interactions, but also characteristics of service users, their environments as well as organizations providing services, such as management and funding structures, culture and leadership. Findings from this study challenge researchers, policy makers and practitioners to examine existing quality service standards and measurements and to adopt alternate methodologies and solutions to differentiate and scale up evidence-based quality practices so that all people with disabilities have access to services that support them to live, work, and enjoy where and with whom they choose.Keywords: co-production, inclusion, independent living, quality measurement, quality supports
Procedia PDF Downloads 39955 The Influence of Parental Media Mediation on Adolescents Risky Media Use: Controlled vs. Autonomy Supportive Strategies
Authors: Jeffrey L. Hurst, Sarah M. Coyne
Abstract:
With the growth of technology and media, teens are increasingly exposed to media such as pornography and engaging in risky media use such as sexting. Parental media mediation strategies including controlling or autonomy supporting strategies can be an important protective factor against risky media uses. The purpose of this study is to examine how parental media mediation around media, influence adolescents’ behaviors including frequency of pornography use and sexting. We also examine the effects of parental media mediation on adolescents disclosing pornography use to parents and the amount of secrets that adolescents keep about pornography use. We hypothesize that controlling media mediation will result in more sexting, more frequency pornography use, more secrets about pornography and less disclosure to parents. We also predict that autonomy supportive media mediation will show the opposite pattern. Data for this study came from a nationally representative research project, Project M.E.D.I.A. Participants included 783 adolescents. 49% of the participants were male, and the mean age for boys was 15.44 years (SD= 3.34) and for girls was 15.3 years (SD=2.93). Parental media mediation was assessed using an eight-item measure with subscales of controlling and autonomy supporting media mediation. Participants were also asked if they have ever viewed pornography. If they answered yes, they were asked about the frequency of pornography use as well as if they have ever kept secrets from their parents about it and if they had ever disclosed their pornography use to their parents. The data analysis strategy for this study was a multiple group path analysis. Frequency of pornography use, sexting, secrets from parents and disclosure to parents were predicted by controlling and autonomy supporting parental media mediation, frequency of parents warning against pornography use, income and ethnicity. Groups were distinguished by boys and girls, allowing for sex differences. After running the model in MPLUS, we found partial support for our hypotheses. Autonomy supportive media mediation resulted in less sexting for boys (β= -.15, p < .05) and girls ( β= -.13, p < .05). Autonomy supportive media mediation also predicted keeping fewer secrets for girls (β=-.27, p < .01) but had no effect for boys. Controlling media mediation predicted more disclosure about pornography to parents for boys (β=.16, p < .05) and less disclosure to parents about pornography for girls (β=-.14, p < .05). Frequency of pornography was not predicted by any of the predictors in the model. Autonomy supportive media mediation was a very strong predictor of less sexting for both boys and girls. Parents should approach media mediation with this supportive and understanding mindset. Parental autonomy support allows adolescents to explore and develop their own moral beliefs without feeling guilt or shame from their parents. This need to have autonomy is also shown by girls disclosing less pornography use to their parents when parents are really controlling about media use. Interestingly, boys disclosed more to their parents when their parents were controlling. Further research is needed on why this is. Further research should also look at the effects that disclosing pornography use to parents has on future pornography use.Keywords: media, moral development, parental mediation, pornography, sexting
Procedia PDF Downloads 15654 Deforestation, Vulnerability and Adaptation Strategies of Rural Farmers: The Case of Central Rift Valley Region of Ethiopia
Authors: Dembel Bonta Gebeyehu
Abstract:
In the study area, the impacts of deforestation for environmental degradation and livelihood of farmers manifest in different faces. They are more vulnerable as they depend on rain-fed agriculture and immediate natural forests. On the other hand, after planting seedling, waste disposal and management system of the plastic cover is poorly practiced and administered in the country in general and in the study area in particular. If this situation continues, the plastic waste would also accentuate land degradation. Besides, there is the absence of empirical studies conducted comprehensively on the research under study the case. The results of the study could suffice to inform any intervention schemes or to contribute to the existing knowledge on these issues. The study employed a qualitative approach based on intensive fieldwork data collected via various tools namely open-ended interviews, focus group discussion, key-informant interview and non-participant observation. The collected data was duly transcribed and latter categorized into different labels based on pre-determined themes to make further analysis. The major causes of deforestation were the expansion of agricultural land, poor administration, population growth, and the absence of conservation methods. The farmers are vulnerable to soil erosion and soil infertility culminating in low agricultural production; loss of grazing land and decline of livestock production; climate change; and deterioration of social capital. Their adaptation and coping strategies include natural conservation measures, diversification of income sources, safety-net program, and migration. Due to participatory natural resource conservation measures, soil erosion has been decreased and protected, indigenous woodlands started to regenerate. These brought farmers’ attitudinal change. The existing forestation program has many flaws. Especially, after planting seedlings, there is no mechanism for the plastic waste disposal and management. It was also found out organizational challenges among the mandated offices In the studied area, deforestation is aggravated by a number of factors, which made the farmers vulnerable. The current forestation programs are not well-planned, implemented, and coordinated. Sustainable and efficient seedling plastic cover collection and reuse methods should be devised. This is possible through creating awareness, organizing micro and small enterprises to reuse, and generate income from the collected plastic etc.Keywords: land-cover and land-dynamics, vulnerability, adaptation strategy, mitigation strategies, sustainable plastic waste management
Procedia PDF Downloads 38853 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 11152 An Observation Approach of Reading Order for Single Column and Two Column Layout Template
Authors: In-Tsang Lin, Chiching Wei
Abstract:
Reading order is an important task in many digitization scenarios involving the preservation of the logical structure of a document. From the paper survey, it finds that the state-of-the-art algorithm could not fulfill to get the accurate reading order in the portable document format (PDF) files with rich formats, diverse layout arrangement. In recent years, most of the studies on the analysis of reading order have targeted the specific problem of associating layout components with logical labels, while less attention has been paid to the problem of extracting relationships the problem of detecting the reading order relationship between logical components, such as cross-references. Over 3 years of development, the company Foxit has demonstrated the layout recognition (LR) engine in revision 20601 to eager for the accuracy of the reading order. The bounding box of each paragraph can be obtained correctly by the Foxit LR engine, but the result of reading-order is not always correct for single-column, and two-column layout format due to the table issue, formula issue, and multiple mini separated bounding box and footer issue. Thus, the algorithm is developed to improve the accuracy of the reading order based on the Foxit LR structure. In this paper, a creative observation method (Here called the MESH method) is provided here to open a new chance in the research of the reading-order field. Here two important parameters are introduced, one parameter is the number of the bounding box on the right side of the present bounding box (NRight), and another parameter is the number of the bounding box under the present bounding box (Nunder). And the normalized x-value (x/the whole width), the normalized y-value (y/the whole height) of each bounding box, the x-, and y- position of each bounding box were also put into consideration. Initial experimental results of single column layout format demonstrate a 19.33% absolute improvement in accuracy of the reading-order over 7 PDF files (total 150 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 72%. And for two-column layout format, the preliminary results demonstrate a 44.44% absolute improvement in accuracy of the reading-order over 2 PDF files (total 18 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 0%. Until now, the footer issue and a part of multiple mini separated bounding box issue can be solved by using the MESH method. However, there are still three issues that cannot be solved, such as the table issue, formula issue, and the random multiple mini separated bounding boxes. But the detection of the table position and the recognition of the table structure are out of the scope in this paper, and there is needed another research. In the future, the tasks are chosen- how to detect the table position in the page and to extract the content of the table.Keywords: document processing, reading order, observation method, layout recognition
Procedia PDF Downloads 18151 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener
Authors: Wenhao Li, Shijun Guo
Abstract:
Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring
Procedia PDF Downloads 16350 A Culture-Contrastive Analysis Of The Communication Between Discourse Participants In European Editorials
Authors: Melanie Kerschner
Abstract:
Language is our main means of social interaction. News journalism, especially opinion discourse, holds a powerful position in this context. Editorials can be regarded as encounters of different, partially contradictory relationships between discourse participants constructed through the editorial voice. Their primary goal is to shape public opinion by commenting on events already addressed by other journalistic genres in the given newspaper. In doing so, the author tries to establish a consensus over the negotiated matter (i.e. the news event) with the reader. At the same time, he/she claims authority over the “correct” description and evaluation of an event. Yet, how can the relationship and the interaction between the discourse participants, i.e. the journalist, the reader and the news actors represented in the editorial, be best visualized and studied from a cross-cultural perspective? The present research project attempts to give insights into the role of (media) culture in British, Italian and German editorials. For this purpose the presenter will propose a basic framework: the so called “pyramid of discourse participants”, comprising the author, the reader, two types of news actors and the semantic macro-structure (as meta-level of analysis). Based on this framework, the following questions will be addressed: • Which strategies does the author employ to persuade the reader and to prompt him to give his opinion (in the comment section)? • In which ways (and with which linguistic tools) is editorial opinion expressed? • Does the author use adjectives, adverbials and modal verbs to evaluate news actors, their actions and the current state of affairs or does he/she prefer nominal labels? • Which influence do language choice and the related media culture have on the representation of news events in editorials? • In how far does the social context of a given media culture influence the amount of criticism and the way it is mediated so that it is still culturally-acceptable? The following culture-contrastive study shall examine 45 editorials (i.e. 15 per media culture) from six national quality papers that are similar in distribution, importance and the kind of envisaged readership to make valuable conclusions about culturally-motivated similarities and differences in the coverage and assessment of news events. The thematic orientation of the editorials will be the NSA scandal and the reactions of various countries, as this topic was and still is relevant to each of the three media cultures. Starting out from the “pyramid of discourse participants” as underlying framework, eight different criteria will be assigned to the individual discourse participants in the micro-analysis of the editorials. For the purpose of illustration, a single criterion, referring to the salience of authorial opinion, will be selected to demonstrate how the pyramid of discourse participants can be applied as a basis for empirical analysis. Extracts from the corpus shall furthermore enhance the understanding.Keywords: Micro-analysis of editorials, culture-contrastive research, media culture, interaction between discourse participants, evaluation
Procedia PDF Downloads 51549 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 14848 Metamorphosis of Caste: An Examination of the Transformation of Caste from a Material to Ideological Phenomenon in Sri Lanka
Authors: Pradeep Peiris, Hasini Lecamwasam
Abstract:
The fluid, ambiguous, and often elusive existence of caste among the Sinhalese in Sri Lanka has inspired many scholarly endeavours. Originally, Sinhalese caste was organized according to the occupational functions assigned to various groups in society. Hence cultivators came to be known as Goyigama, washers Dobi, drummers Berava, smiths Navandanna and so on. During pre-colonial times the specialized services of various groups were deployed to build water reservoirs, cultivate the land, and/or sustain the Buddhist order by material means. However, as to how and why caste prevails today in Sinhalese society when labour is in ideal terms free to move where it wants, or in other words, occupation is no longer strictly determined or restricted by birth, is a question worth exploring. Hence this paper explores how, and perhaps more interestingly why, when the nexus between traditional occupations and caste status is fast disappearing, caste itself has managed to survive and continues to be salient in politics in Sri Lanka. In answer to this larger question, the paper looks at caste from three perspectives: 1) Buddhism, whose ethical project provides a justification of social stratifications that transcends economic bases 2) Capitalism that has reactivated and reproduced archaic relations in a process of 'accumulation by subordination', not only by reinforcing the marginality of peripheral caste groups, but also by exploiting caste divisions to hinder any realization of class interests and 3) Democracy whose supposed equalizing effect expected through its ‘one man–one vote’ approach has been subverted precisely by itself, whereby the aggregate ultimately comes down to how many such votes each ‘group’ in society has. This study draws from field work carried out in Dedigama (in the District of Kegalle, Central Province) and Kelaniya (in the District of Colombo, Western Province) in Sri Lanka over three years. The choice of field locations was encouraged by the need to capture rural and urban dynamics related to caste since caste is more apparently manifest in rural areas whose material conditions partially warrant its prevalence, whereas in urban areas it exists mostly in the ideological terrain. In building its analysis, the study has employed a combination of objectivist and subjectivist approaches to capture the material and ideological existence of caste and caste politics in Sinhalese society. Therefore, methods such as in-depth interviews, observation, and collection of demographical and interpretive data from secondary sources were used for this study. The paper has been situated in a critical theoretical framework of social inquiry in an attempt to question dominant assumptions regarding such meta-labels as ‘Capitalism’ and ‘Democracy’, and also the supposed emancipatory function of religion (focusing on Buddhism).Keywords: Buddhism, capitalism, caste, democracy, Sri Lanka
Procedia PDF Downloads 13647 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows
Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican
Abstract:
This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.Keywords: laboratory-process, optimization, pathology, computer simulation, workflow
Procedia PDF Downloads 28646 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods
Authors: Thabo M. Bafitlhile, Adewole Oladele
Abstract:
Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.Keywords: drainage, estimate, evaluation, floods, flood forecasting
Procedia PDF Downloads 37145 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study
Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski
Abstract:
Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model
Procedia PDF Downloads 14944 Detection of Egg Proteins in Food Matrices (2011-2021)
Authors: Daniela Manila Bianchi, Samantha Lupi, Elisa Barcucci, Sandra Fragassi, Clara Tramuta, Lucia Decastelli
Abstract:
Introduction: The undeclared allergens detection in food products plays a fundamental role in the safety of the allergic consumer. The protection of allergic consumers is guaranteed, in Europe, by Regulation (EU) No 1169/2011 of the European Parliament, which governs the consumer's right to information and identifies 14 food allergens to be mandatorily indicated on food labels: among these, an egg is included. An egg can be present as an ingredient or as contamination in raw and cooked products. The main allergen egg proteins are ovomucoid, ovalbumin, lysozyme, and ovotransferrin. This study presents the results of a survey conducted in Northern Italy aimed at detecting the presence of undeclared egg proteins in food matrices in the latest ten years (2011-2021). Method: In the period January 2011 - October 2021, a total of 1205 different types of food matrices (ready-to-eat, meats, and meat products, bakery and pastry products, baby foods, food supplements, pasta, fish and fish products, preparations for soups and broths) were delivered to Food Control Laboratory of Istituto Zooprofilattico Sperimentale of Piemonte Liguria and Valle d’Aosta to be analyzed as official samples in the frame of Regional Monitoring Plan of Food Safety or in the contest of food poisoning. The laboratory is ISO 17025 accredited, and since 2019, it has represented the National Reference Centre for the detection in foods of substances causing food allergies or intolerances (CreNaRiA). All samples were stored in the laboratory according to food business operator instructions and analyzed within the expiry date for the detection of undeclared egg proteins. Analyses were performed with RIDASCREEN®FAST Ei/Egg (R-Biopharm ® Italia srl) kit: the method was internally validated and accredited with a Limit of Detection (LOD) equal to 2 ppm (mg/Kg). It is a sandwich enzyme immunoassay for the quantitative analysis of whole egg powder in foods. Results: The results obtained through this study showed that egg proteins were found in 2% (n. 28) of food matrices, including meats and meat products (n. 16), fish and fish products (n. 4), bakery and pastry products (n. 4), pasta (n. 2), preparations for soups and broths (n.1) and ready-to-eat (n. 1). In particular, in 2011 egg proteins were detected in 5% of samples, in 2012 in 4%, in 2013, 2016 and 2018 in 2%, in 2014, 2015 and 2019 in 3%. No egg protein traces were detected in 2017, 2020, and 2021. Discussion: Food allergies occur in the Western World in 2% of adults and up to 8% of children. Allergy to eggs is one of the most common food allergies in the pediatrics context. The percentage of positivity obtained from this study is, however, low. The trend over the ten years has been slightly variable, with comparable data.Keywords: allergens, food, egg proteins, immunoassay
Procedia PDF Downloads 13643 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 38942 Investigation of the Possible Correlation of Earthquakes with a Red Tide Occurrence in the Persian Gulf and Oman Sea
Authors: Hadis Hosseinzadehnaseri
Abstract:
The red tide is a kind of algae blooming, caused different problems at different sizes for the human life and the environment, so it has become one of the serious global concerns in the field of Oceanography in few recent decades. This phenomenon has affected on Iran's water, especially the Persian Gulf's since last few years. Collecting data associated with this phenomenon and comparison in different parts of the world is significant as a practical way to study this phenomenon and controlling it. Effective factors to occur this phenomenon lead to the increase of the required nutrients of the algae or provide a good environment for blooming. In this study, we examined the probability of relation between the earthquake and the harmful algae blooming in the Persian Gulf's water through comparing the earthquake data and the recorded Red tides. On the one hand, earthquakes can cause changes in seawater temperature that is effective in creating a suitable environment and the other hand, it increases the possibility of water nutrients, and its transportation in the seabed, so it can play a principal role in the development of red tide occurrence. Comparing the distribution spatial-temporal maps of the earthquakes and deadly red tides in the Persian Gulf and Oman Sea, confirms the hypothesis, why there is a meaningful relation between these two distributions. Comparing the number of earthquakes around the world as well as the number of the red tides in many parts of the world indicates the correlation between these two issues. This subject due to numerous earthquakes, especially in recent years and in the southern part of the country should be considered as a warning to the possibility of re-occurrence of a critical state of red tide in a large scale, why in the year 2008, the number of recorded earthquakes have been more than near years. In this year, the distribution value of the red tide phenomenon in the Persian Gulf got measured about 140,000 square kilometers and entire Oman Sea, with 10 months Survival in the area, which is considered as a record among the occurred algae blooming in the world. In this paper, we could obtain a logical and reasonable relation between the earthquake frequency and this phenomenon occurrence, through compilation of statistics relating to the earthquakes in the southern Iran, from 2000 to the end of the first half of 2013 and also collecting statistics on the occurrence of red tide in the region as well as examination of similar data in different parts of the world. As shown in Figure 1, according to a survey conducted on the earthquake data, the most earthquakes in the southern Iran ranks first in the fourth Gregorian calendar month In April, coincided with Ordibehesht and Khordad in Persian calendar and then in the tenth Gregorian calendar month In October, coincided in Aban and Azar in Persian calendar.Keywords: red tide, earth quake, persian gulf, harmful algae bloom
Procedia PDF Downloads 50041 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 10040 Contribution at Dimensioning of the Energy Dissipation Basin
Authors: M. Aouimeur
Abstract:
The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method.Keywords: dimensioning, energy dissipation basin, hydraulic jump, protection of the environment
Procedia PDF Downloads 583