Search results for: suspended solids
266 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics
Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari
Abstract:
Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption
Procedia PDF Downloads 104265 Impedance Based Biosensor for Agricultural Pathogen Detection
Authors: Rhea Patel, Madhuri Vinchurkar, Rajul Patkar, Gopal Pranjale, Maryam Shojaei Baghini
Abstract:
One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection.Keywords: agriculture, biosensor, electrochemical impedance spectroscopy, microelectrode, pathogen detection
Procedia PDF Downloads 155264 Virtual Modelling of Turbulent Fibre Flow in a Low Consistency Refiner for a Sustainable and Energy Efficient Process
Authors: Simon Ingelsten, Anton Lundberg, Vijay Shankar, Lars-Olof Landström, Örjan Johansson
Abstract:
The flow in a low consistency disc refiner is simulated with the aim of identifying flow structures possibly being of importance for a future study to optimise the energy efficiency in refining processes. A simplified flow geometry is used, where a single groove of a refiner disc is modelled. Two different fibre models are used to simulate turbulent fibre suspension flow in the groove. The first model is a Bingham viscoplastic fluid model where the fibre suspension is treated as a non-Newtonian fluid with a yield stress. The second model is a new model proposed in a recent study where the suspended fibres effect on flow is accounted for through a modelled orientation distribution function (ODF). Both models yielded similar results with small differences. Certain flow characteristics that were expected and that was found in the literature were identified. Some of these flow characteristics may be of importance in a future process to optimise the refiner geometry to increase the energy efficiency. Further study and a more detailed flow model is; however, needed in order for the simulations to yield results valid for quantitative use in such an optimisation study. An outline of the next steps in such a study is proposed.Keywords: disc refiner, fibre flow, sustainability, turbulence modelling
Procedia PDF Downloads 406263 Improvement of Water Distillation Plant by Using Statistical Process Control System
Authors: Qasim Kriri, Harsh B. Desai
Abstract:
Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.Keywords: acceptable quality level, statistical quality control, control charts, process charts
Procedia PDF Downloads 185262 Effectiveness of Jackfruit Seed Starch as Coagulant Aid in Landfill Leachate Treatment
Authors: Mohd Suffian Yusoff, Noor Aina Mohamad Zuki, Mohd Faiz Muaz Ahmad Zamri
Abstract:
Currently, aluminium sulphate (alum), ferric chloride and polyaluminium chloride (PAC) are the most common coagulants being used for leachate coagulation-flocculation treatment. However, the impact of these residual’s coagulants have sparked huge concern ceaselessly. Therefore, development of natural coagulant as an alternative coagulant for treatment process has been given full attentions. In this attempt jackfruit seed starch (JSS) was produce by extraction method. The removal efficiency was determined using jar test method. The removal of organic matter and ammonia were compared between JSS used in powder form and diluted form in leachate. The yield of starch from the extraction method was 33.17 % with light brown in colour. The removal of turbidity was the highest at pH 8 for both diluted and powdered JSS with 38% and 8.7% of removal. While for colour removal the diluted JSS showed 18.19% of removal compared to powdered JSS. The diluted JSS also showed the highest removal of suspended solid with 3.5% compared to powdered JSS with 2.8%. Instead of coagulant, JSS as coagulant aid has succeed to reduce the dosage of PAC from 900 mg/L to 528 mg/L by maintaining colour and turbidity removal up to 94% and 92 % respectively. The JSS coagulant also has decreased the negative charge of the leachate nearly to the neutral charge (0.209 mv). The result proved that JSS was more effective to be used as coagulant aid landfill leachate treatment.Keywords: landfill leachate, natural coagulant, jackfruit seed starch, coagulant
Procedia PDF Downloads 504261 Fouling of Regenerated Ultrafiltration Membrane in Treatment of Oily Wastewater of Palm Oil Refinery
Authors: K. F. Md Yunos, N. S. Pajar, N. S. Azmi
Abstract:
Oily wastewater in Malaysian refinery has become a big issue of water and environment pollution to be solved urgently. The results of an experimental study on separation of oily wastewaters are presented. The characteristic of filtration behavior of commercial polymer ultrafiltration (UF) membranes was evaluated in the treatment of oily wastewater from palm oil refinery. The performance of different molecular weight cut off 5kDa and 10kDa regenerated cellulose membrane were evaluated and compared and the fouling behavior were analyzed by scanning electron microscopy (SEM). The effect of pressure (0.5, 1.0, 1.5, 2.0, 2.5 bar) and sample concentration (100%, 75%, 50%, 25%) on fouling of 5kDa and 10kDa membrane were evaluated. The characteristic of the sample solutions were analyzed for turbidity, total dissolved solid (TDS), total suspended solid (TSS), BOD, and COD. The results showed that the best fit to experimental data corresponds to the cake layer formation followed by the intermediate blocking for the experimental conditions tested. A more detailed analysis of the fouling mechanisms was studied by dividing the filtration curves into different regions corresponding to the different fouling mechanisms. Intermediate blocking and cake layer formation or combinations of them were found to occur during the UF experiments depending on the operating conditions.Keywords: fouling, oily wastewater, regenerated cellulose, ultrafiltration
Procedia PDF Downloads 419260 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa
Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz
Abstract:
Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment
Procedia PDF Downloads 159259 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics
Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster
Abstract:
Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition
Procedia PDF Downloads 86258 Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls
Authors: Ivanova B. Natalia, Djambova Т. Svetlana, Hristev S. Ivailo
Abstract:
The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms.Keywords: acoustic panels, recycled felt, sound absorption, sound insulation, classroom acoustics
Procedia PDF Downloads 90257 Microfluidized Fiber Based Oleogels for Encapsulation of Lycopene
Authors: Behic Mert
Abstract:
This study reports a facile approach to structure soft solids from microfluidizer lycopene-rich plant based structure and oil. First carotenoid-rich plant material (pumpkin was used in this study) processed with high-pressure microfluidizer to release lycopene molecules, then an emulsion was formed by mixing processed plant material and oil. While, in emulsion state lipid soluble carotenoid molecules were allowed to dissolve in the oil phase, the fiber material of plant material provided the network which was required for emulsion stabilization. Additional hydrocolloids (gelatin, xhantan, and pectin) up to 0.5% were also used to reinforce the emulsion stability and their impact on final product properties were evaluated via rheological, textural and oxidation studies. Finally, water was removed from emulsion phase by drying in a tray dryer at 40°C for 36 hours, and subsequent shearing resulted in soft solid (ole gel) structures. The microstructure of these systems was revealed by cryo-scanning electron microscopy. Effect of hydrocolloids on total lycopene and surface lycopene contents were also evaluated. The surface lycopene was lowest in gelatin containing oleo gels and highest in pectin-containing oleo gels. This study outlines the novel emulsion-based structuring method that can be used to encapsulate lycopene without the need of separate extraction of them.Keywords: lycopene, encapsulation, fiber, oleo gel
Procedia PDF Downloads 266256 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash
Authors: Pinki Sharma, Himanshu Joshi
Abstract:
Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level. But at most of the places these plants are not properly working due to high concentration of organic matter and other contaminants in biologically treated spentwash. To make the membrane treatment proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) as pre-treatment of RO at tertiary stage was performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15- 43°C) used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS by 62%, 93.5% and 75.5%, with UF, respectively at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.Keywords: bio-digested distillery spentwash, reverse osmosis, response surface methodology, ultra-filtration
Procedia PDF Downloads 347255 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)
Authors: M. Kessi
Abstract:
We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force
Procedia PDF Downloads 181254 Enhancing Seawater Desalination Efficiency with Combined Reverse Osmosis and Vibratory Shear-Enhanced Processing for Higher Conversion Rates and Reduced Energy Consumption
Authors: Reda Askouri, Mohamed Moussetad, Rhma Adhiri
Abstract:
Reverse osmosis (RO) is one of the most widely used techniques for seawater desalination. However, the conversion rate of this method is generally limited to 35-45% due to the high-pressure capacity of the membranes. Additionally, the specific energy consumption (SEC) for seawater desalination is high, necessitating energy recovery systems to minimise energy consumption. This study aims to enhance the performance of seawater desalination by combining RO with a vibratory shear-enhanced processing (VSEP) technique. The RO unit in this study comprises two stages, each powered by a hydraulic turbocharger that increases the pressure in both stages. The concentrate from the second stage is then directly processed by VSEP technology. The results demonstrate that the permeate water obtained exhibits high quality and that the conversion rate is significantly increased, reaching high percentages with low SEC. Furthermore, the high concentration of total solids in the concentrate allows for potential exploitation within the environmental protection framework. By valorising the concentrated waste, it’s possible to reduce the environmental impact while increasing the overall efficiency of the desalination process.Keywords: specific energy consumption, vibratory shear enhanced process, environmental challenge, water recovery
Procedia PDF Downloads 12253 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity
Authors: Muhammad Waqar Ashraf
Abstract:
The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.Keywords: magnetic treatment, saline water, hardness of water, removal of salinity
Procedia PDF Downloads 496252 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry
Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter
Abstract:
The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observedKeywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion
Procedia PDF Downloads 101251 Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies
Authors: Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Dalpke, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis, Konstantinos Dassios
Abstract:
Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications.Keywords: carbon nanomembranes, mechanical properties, AFM
Procedia PDF Downloads 85250 Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep's Breeds
Authors: A. Ameur Ameur, F. Chougrani, M. Halbouche
Abstract:
In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn.Keywords: Hamra, Ouled Djellal, protein polymorphism, sheep breeds
Procedia PDF Downloads 557249 Effect of Surfactant on Thermal Conductivity of Ethylene Glycol/Silver Nanofluid
Authors: E. C. Muhammed Irshad
Abstract:
Nanofluids are a new class of solid-liquid colloidal mixture consisting of nanometer sized (< 100nm) solid particles suspended in heat transfer fluids such as water, ethylene/propylene glycol etc. Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids and it leads to enhancement of the heat transfer coefficient. In the present study, silver nanoparticles are dispersed in ethylene glycol water mixture. Low volume concentrations (0.05%, 0.1% and 0.15%) of silver nanofluids were synthesized. The thermal conductivity of these nanofluids was determined with thermal property analyzer (KD2 pro apparatus) and heat transfer coefficient was found experimentally. Initially, the thermal conductivity and viscosity of nanofluids were calculated with various correlations at different concentrations and were compared. Thermal conductivity of silver nanofluid at 0.02% and 0.1% concentration of silver nanoparticle increased to 23.3% and 27.7% for Sodium Dodecyl Sulfate (SDS) and to 33.6% and 36.7% for Poly Vinyl Pyrrolidone (PVP), respectively. The nanofluid maintains the stability for two days and it starts to settle down due to high density of silver. But it shows good improvement in the thermal conductivity for low volume concentration and it also shows better improvement with Poly Vinyl Pyrrolidone (PVP) surfactant than Sodium Dodecyl Sulfate (SDS).Keywords: k-thermal conductivity, sodium dodecyl sulfate, vinyl pyrrolidone, mechatronics engineering
Procedia PDF Downloads 313248 Relaxant Effects of Sideritis raeseri Extract on the Uterus of Rabbits
Authors: Berat Krasniqi, Shpëtim Thaçi, Miribane Dërmaku-Sopjani, Sokol Abazi, Mentor Sopjani
Abstract:
The Mediterranean native plant, Sideritis raeseri Boiss. & Heldr. (Lamiaceae), also known as "mountain tea," has a long history of use in traditional medicine. The effects of an ethanol extract of Sideritis raeseri (SR) on uterus smooth muscle activity are evaluated in this study, and the underlying mechanism is identified. S. raeseri extract (SRE) was made from air-dried components of the SR shoot system. At 37°C, the SRE (0.5-2 mg/mL) was tested on isolated rabbit uterus rings that were suspended in a Krebs solution-filled organ bath and bubbled with a mixture of 95% O₂ and 5% CO₂. The SRE alone relaxed the muscle contraction in a concentration-dependent manner in uterine rings in in vitro tests. SRE also decreased Ca²⁺-induced contractions in the uterus by a large amount when the uterus was depolarized with carbachol (CCh, 1µM), K⁺ (80 mM), or contracted by oxytocin (5 nM). The potential involvement of NO-dependent or independent cGMP mechanisms in the uterine actions of SR was investigated. For this purpose, L-NAME (NO synthase inhibitor, 100 M) or bradykinin (NO synthase stimulator, 100 nM), or indomethacin (cyclooxygenase inhibitor, 10µM) decreased the impact of SRE. These results suggest that NO-dependent signaling is involved in SRE's mediated uterine relaxant effect. Data suggests that SRE could be a powerful tocolytic agent that reduces uterine activity and could be used to treat a number of uterine conditions.Keywords: Sideritis raeseri, uterus, alternative medicine, intracellular mechanisms
Procedia PDF Downloads 116247 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 371246 Performance Assessment of Recycled Alum Sludge in the Treatment of Textile Industry Effluent in South Africa
Authors: Tony Ngoy Mbodi, Christophe Muanda
Abstract:
Textile industry is considered as one of the most polluting sectors in terms of effluent volume of discharge and wastewater composition, such as dye, which represents an environmental hazard when discharged without any proper treatment. A study was conducted to investigate the capability of the use of recycled alum sludge (RAS) as an alternative treatment for the reduction of colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH adjustment from dye based synthetic textile industry wastewater. The coagulation/flocculation process was studied for coagulants of Alum:RAS ratio of, 1:1, 2:1, 1:2 and 0:1. Experiments on treating the synthetic wastewater using membrane filtration and adsorption with corn cobs were also conducted. Results from the coagulation experiment were compared to those from adsorption with corn cobs and membrane filtration experiments conducted on the same synthetic wastewater. The results of the RAS experiments were also evaluated against standard guidelines for industrial effluents treated for discharge purposes in order to establish its level of compliance. Based on current results, it can be concluded that reusing the alum sludge as a low-cost material pretreatment method into the coagulation/flocculation process can offer some advantages such as high removal efficiency for disperse dye and economic savings on overall treatment of the industry wastewater.Keywords: alum, coagulation/flocculation, dye, recycled alum sludge, textile wastewater
Procedia PDF Downloads 353245 Annual and Seasonal Variations in Air Quality Index of the National Capital Region, India
Authors: Surinder Deswal, Vineet Verma
Abstract:
Air Quality Index (AQI) is used as a tool to indicate the level of severity and disseminate the information on air pollution to enable the public to understand the health and environmental impacts of air pollutant concentration levels. The annual and seasonal variation of criteria air pollutants concentration based on the National Ambient Air Quality Monitoring Programme has been conducted for a period of nine years (2006-2014) using the AQI system. AQI was calculated using IND-AQI methodology and Maximum Operator Concept is applied. An attempt has been made to quantify the variations in AQI on an annual and seasonal basis over a period of nine years. Further, year-wise frequency of occurrence of AQI in each category for all the five stations is analysed, which presents in depth analysis of trends over the period of study. The best air quality was observed in the Noida residential area, followed by Noida industrial area during the study period; whereas, Bulandshahar industrial area and Faridabad residential area were observed to have the worst air quality. A shift in the worst air quality from winter to summer season has also been observed during the study period. Further, the level of Respirable Suspended Particulate Matter was found to be above permissible limit at all the stations. The present study helps in enhancing public awareness and calls for the need of immediate measures to be taken to counter-effect the cause of the increasing level of air pollution.Keywords: air quality index, annual trends, criteria pollutants, seasonal variation
Procedia PDF Downloads 280244 Flowering Response of a Red Pitaya Germplasm Collection to Lighting Addition
Authors: Dinh-Ha Tran, Chung-Ruey Yen, Yu-Kuang H. Chen
Abstract:
A collection of thirty cultivars/clones of red pitaya was used to investigate flowering response to lighting supplementation in the winter season of 2013-2014 in southern Taiwan. The night-breaking treatment was conducted during the period of 10 Oct. 2013 to 5 Mar. 2014 with 4-continuous hours (22.00–02.00 hrs) of additional lighting daily using incandescent bulbs (100W). Among cultivars and clones tested, twenty-three genotypes, most belonging to the red-magenta flesh type, were found to have positive flowering response to the lighting treatment. The duration of night-breaking treatment for successful flowering initiation varied from 33 - 48 days. The lighting-sensitive genotypes bore 1-2 flowering flushes. Floral and fruiting stages took 21-26 and 46-59 days, respectively. Among sixteen fruiting genotypes, the highest fruit set rates were found in Damao 9, D4, D13, Chaozou large, Chaozhou 5, Small Nick and F22. Five cultivars and clones (Orejona, D4, Chaozhou large, Chaozhou 5, and Small Nick) produced fruits with an average weight of more than 300 g per fruit which was higher than those of the fruits formed in the summer of 2013. Fruits produced during off-season contain total soluble solids (TSS) from 17.5 to 20.7 oBrix, which was higher than those produced in-season.Keywords: flowering response, long-day plant, night-breaking treatment, off-season production, pitaya
Procedia PDF Downloads 302243 Particulate Pollution and Its Effect on Respiratory Symptoms of Exposed Personnel's in Three Heavy Traffic Cities (Roads), Kathmandu, Nepal
Authors: Sujen Man Shrestha, Kanchan Thapa, Tista Prasai Joshi
Abstract:
Background: The present study was carried out to determine suspended particles and respirable particles of diameter less than 1 micrometers (PM1) on road side and some distance of outside from road; and to compare the respiratory symptoms between traffic police men and shop keepers directly 'exposed' to traffic fumes and office worker stay in 'protected' enclosed environment. Methods: Semi structured questionnaire was used to collect the data among case and control after getting verbal informed consent among the convenience sample of traffic police, shopkeepers and officials in three different locations in Kathmandu. Secondary data analysis of hospital data of three hospitals of Kathmandu was also performed. The data on air Particulate Matter was taken by Haz Dust. Results: The result showed air quality of road side traffic is unhealthy and there was increasing trends of respiratory illness in hospital outpatient department (OPD). The people who were exposed found to have more risk of developing respiratory diseases symptoms. Conclusions: The study concluded that air pollution level is strong contributing factor for respiratory diseases and further recommended strong, epidemiological studies with larger sample size, less bias, and also measuring other significant physical and chemicals parameters of air pollution.Keywords: heavy traffic cities, Kathmandu, particulate pollution, respiratory symptoms
Procedia PDF Downloads 303242 Long Term Changes of Aerosols and Their Radiative Forcing over the Tropical Urban Station Pune, India
Authors: M. P. Raju, P. D. Safai, P. S. P. Rao, P. C. S. Devara, C. V. Naidu
Abstract:
In order to study the Physical and chemical characteristics of aerosols, samples of Total Suspended Particulates (TSP) were collected using a high volume sampler at Pune, a semi-urban location in SW India during March 2009 to February 2010. TSP samples were analyzed for water soluble components like F, Cl, NO3, SO4, NH4, Na, K, Ca, and Mg and acid soluble components like Al, Zn, Fe and Cu using Ion-Chromatograph and Atomic Absorption Spectrometer. Analysis of the data revealed that the monthly mean TSP concentrations varied between 471.3 µg/m3 and 30.5 µg/m3 with an annual mean value of 159.8 µg/m3. TSP concentrations were found to be less during post-monsoon and winter (October through February), compared to those in summer and monsoon (March through September). Anthropogenic activities like vehicular emissions and dust particles originated from urban activities were the major sources for TSP. TSP showed good correlation with all the major ionic components, especially with SO4 (R= 0.62) and NO3 (R= 0.67) indicating the impact of anthropogenic sources over the aerosols at Pune. However, the overall aerosol nature was alkaline (Ave pH = 6.17) mainly due to the neutralizing effects of Ca and NH4. SO4 contributed more (58.8%) to the total acidity as compared to NO3 (41.1%) where as, Ca contributed more (66.5%) to the total alkalinity than NH4 (33.5%). Seasonality of acid soluble component Al, Fe and Cu showed remarkable increase, indicating the dominance of soil source over the man-made activities. Overall study on TSP indicated that aerosols at Pune were mainly affected by the local sources.Keywords: chemical composition, acidic and neutralization potential, radiative forcing, urban station
Procedia PDF Downloads 244241 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation
Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar
Abstract:
In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment
Procedia PDF Downloads 431240 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region
Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.
Abstract:
A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.Keywords: catheter, slip parameter, drag parameter, eccentricity
Procedia PDF Downloads 523239 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State
Authors: G. T. Mudashiru, Mayowa P. Ibitola
Abstract:
Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.Keywords: drinking water, physiology, boreholes, heavy metals, domestic
Procedia PDF Downloads 220238 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment
Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi
Abstract:
The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.Keywords: characterization, MSW, open burning, PM10, PM2.5
Procedia PDF Downloads 339237 Assessment of Microbiological Status of Branded and Street Vended Ice-Cream Offered for Public Consumption: A Comparative Study in Tangail Municipality, Bangladesh
Authors: Afroza Khatun, Masuma, Md. Younus Mia, Kamal Kanta Das
Abstract:
Analysis of the microbial status and physicochemical parameters of some branded and street vended ice cream showed that total viable bacteria in branded ice cream ranged from 4.8×10³ to 1.10×10⁵ cfu/ml, and in street vended ice-cream ranged from 7.5×10⁴ to 1.6×10⁸ cfu/ml. Total coliform bacteria present up to 9.20×10³ cfu/ml in branded ice cream and 5.3×10³ to 9.6×10⁶ cfu/ml observed in street vended ice cream. Total E. coli were found to be present within a range from 0 to 4.5×10³ cfu/ml in branded and 4.1×10² to 7.5×10⁴ cfu/ml in street ice cream. The ranges of Staphylococcus aureus count were 1.8×10² to 2.9×10⁴ cfu/ml (branded) and 3.9×10⁴ to 7.9×10⁶ cfu/ml (street). The pH of both types of ice cream showed acidic to neutral conditions where the concentration of pH for branded ice cream was 5.5 to 6.9, as well as the value of pH in street ice cream, was 6.2 to 7.0. The range of Total soluble solids in several branded ice creams was 26 to 29%, and the value of TSS obtained in street-vended ice-creams ranged from 5 to 10%. The overall results of this research demonstrated that the microbial quality in all street ice creams exceeded the BSTI standard and exhibited lower quality than the industrially produced branded ice creams due to comparatively faulty manufacturing processes and poor hygiene practices. The presence of pathogenic microbes was also observed in branded ice creams which was quite alarming for public health. So it is suggested that the government authorized organization should conduct the proper monitoring system to ensure that both branded and street vended ice-creams are microbiologically safe to prevent public health hazards.Keywords: food safety, microbiological analysis, physicochemical, ice-cream, E. coli, Staphylococcus aureus
Procedia PDF Downloads 82