Search results for: static nonlinear pushover analysis
28954 Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells
Authors: Hesamoddin Abdollahpour, Roghayeh Abdollahpour, Elham Rahgozar
Abstract:
This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task.Keywords: large amplitude, free vibrations, analytical solution, Danell Equation, diagram of phase plane
Procedia PDF Downloads 32028953 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: A. Guezane-Lakoud, S. Bensebaa
Abstract:
In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem
Procedia PDF Downloads 41428952 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Ozgoren, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.Keywords: unmanned aerial vehicles, sliding mode control, 3D guidance, nonlinear sliding manifolds
Procedia PDF Downloads 45128951 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior
Procedia PDF Downloads 32928950 Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide
Authors: A. Didaoui, N. Benhalima, M. Elkeurti, A. Chouaih, F. Hamzaoui
Abstract:
The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method show good agreement with xperimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. the intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values.Keywords: DFT, Gaussian 03, NLO, N-(2-Methylphenyl)-2-nitrobenzenesulfonamide
Procedia PDF Downloads 54928949 The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability Hyperpolarizability, and Homo–Lumo Analysis of Monomeric and Dimeric Structures of 2-Chloro-N-(2 Methylphenyl) Benzamide
Authors: N. Khelloul, N. Benhalima, A. Chouaih, F. Hamzaoui
Abstract:
The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method shows good agreement with experimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that 2-Chloro-N-(2-methylphenyl) benzamide 2 molecule may have nonlinear optical (NLO) comportment with non-zero values.Keywords: DFT, HOMO, LUMO, NLO
Procedia PDF Downloads 33928948 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions
Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra
Abstract:
The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.Keywords: modulational instability, ion acoustic wave, KBM method
Procedia PDF Downloads 66528947 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria
Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero
Abstract:
Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria
Procedia PDF Downloads 33628946 Produced Water Treatment Using Novel Solid Scale Inhibitors Based on Silver Tungstate Loaded Kit-6: Static and Modeling Evaluation
Authors: R. Hosny, Mahmoud F. Mubarak, Heba M. Salem, Asmaa A. Abdelrahman
Abstract:
Oilfield scaling is a major problem in the oil and gas industry. Scale issues cost the industry millions of dollars in damage and lost production every year. One of the main causes of global production decline is scale. In this study, solid scale inhibitors based on silver tungstate loaded KIT-6 were synthesized and evaluated in both static and scale inhibition modeling. The silver tungstate loaded KIT-6 catalysts were synthesized via a simple impregnated method using 3D mesoporous KIT-6 as support. The synthesized materials were characterized using wide and low XRD, N2 adsorption–desorption analysis, TGA analysis, and FTIR, SEM, and XPS analysis. The scale inhibition efficiency of the synthesized materials was evaluated using a static scale inhibition test. The results of this study demonstrate the potential application of silver tungstate-loaded KIT-6 solid scale inhibitors for the oil and gas industry. The results of this study will contribute to the development of new and innovative solid scale inhibitors based on silver tungstate-loaded KIT-6. The inhibition efficiency of the scale inhibitor increases, and calcite scale inhibitor decreases with increasing pH (2 to8), it proposes that the scale inhibitor was more effective under alkaline conditions. An inhibition efficiency of 99% on calcium carbonate can be achieved at the optimal dosage of 7.5 ppm at 55oC, indicating that the scale inhibitor exhibits a relatively good inhibition performance on calcium carbonate. The use of these materials can potentially lead to more efficient and cost-effective solutions for scaling inhibition in various industrial processes.Keywords: produced water treatment, solid scale inhibitors, calcite, silver tungestate, 3 D mesoporous KIT-6, oilfield scales, adsorption
Procedia PDF Downloads 14428945 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller
Procedia PDF Downloads 41628944 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 18728943 Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls
Authors: E. Dehghan, R. Dehghan
Abstract:
Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively.Keywords: nonlinear analysis, slender structural walls, moment-curvature relation, bond-slip, plastic hinge length
Procedia PDF Downloads 31728942 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 65628941 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 20228940 The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide
Authors: A. Didaoui, N. Benhalima, M. Elkeurti, A. Chouaih, F. Hamzaoui
Abstract:
The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G(d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G(d,p) method show good agreement with experimental X-ray data. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values.Keywords: DFT, Gaussian 03, NLO, N-(2-Methylphenyl)-2-nitrobenzenesulfonamide, polarizability
Procedia PDF Downloads 32528939 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 13628938 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 10028937 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap
Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý
Abstract:
A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping
Procedia PDF Downloads 53528936 Prey-Predator Eco-Epidemiological Model with Nonlinear Transmission Disease
Authors: Qamar J. A. Khan, Fatma Ahmed Al Kharousi
Abstract:
A prey-predator eco-epidemiological model is studied where transmission of the disease between infected and uninfected prey is nonlinear. The interaction of the predator with infected and uninfected prey species depend on their numerical superiority. Harvesting of both uninfected and infected prey is considered. Stability analysis is carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation parameter it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical results for different set of parameters.Keywords: bifurcation, optimal harvesting, predator, prey, stability
Procedia PDF Downloads 30228935 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study
Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu
Abstract:
Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score
Procedia PDF Downloads 46528934 Static and Dynamic Analysis of Microcantilever Beam
Authors: S. B. Kerur, B. S. Murgayya
Abstract:
The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.Keywords: micro, FEM, dynamic, cantilever beam
Procedia PDF Downloads 38228933 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network
Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib
Abstract:
The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.Keywords: heat exchanger network, synthesis, NLP, optimization
Procedia PDF Downloads 16228932 Behavior of Reinforced Soil by Polypropylene Fibers
Authors: M. Kamal Elbokl
Abstract:
The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain
Procedia PDF Downloads 62328931 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems
Authors: Mohamed Omar
Abstract:
Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing
Procedia PDF Downloads 32528930 Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame
Authors: Hyungoo Kang, Jinkoo Kim
Abstract:
This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure.Keywords: friction dampers, genetic algorithm, optimal design, RC buildings
Procedia PDF Downloads 24428929 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate
Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo
Abstract:
A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.Keywords: chemical reaction, MHD, double-diffusive, stretching plate
Procedia PDF Downloads 40928928 Considering Partially Developed Artifacts in Change Impact Analysis Implementation
Authors: Nazri Kama, Sufyan Basri, Roslina Ibrahim
Abstract:
It is important to manage the changes in the software to meet the evolving needs of the customer. Accepting too many changes causes delay in the completion and it incurs additional cost. One type of information that helps to make the decision is through change impact analysis. Current impact analysis approaches assume that all classes in the class artifact are completely developed and the class artifact is used as a source of analysis. However, these assumptions are impractical for impact analysis in the software development phase as some classes in the class artifact are still under development or partially developed that leads to inaccuracy. This paper presents a novel impact analysis approach to be used in the software development phase. The significant achievements of the approach are demonstrated through an extensive experimental validation using three case studies.Keywords: software development, impact analysis, traceability, static analysis.
Procedia PDF Downloads 60828927 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma
Authors: Sandeep Kumar, Naveen Gupta
Abstract:
Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density
Procedia PDF Downloads 20128926 Steady State Rolling and Dynamic Response of a Tire at Low Frequency
Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa
Abstract:
Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis
Procedia PDF Downloads 36628925 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 178