Search results for: speckle-type POX virus and zinc finger protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3590

Search results for: speckle-type POX virus and zinc finger protein

3260 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs

Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas

Abstract:

The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens).  The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.

Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate

Procedia PDF Downloads 173
3259 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 254
3258 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis

Authors: Alexander A. Tokmakov

Abstract:

Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins

Procedia PDF Downloads 403
3257 Zinc Oxide Nanowires: Device Fabrication and Optical Properties

Authors: Igori Wallace

Abstract:

Zinc oxide (ZnO) nanowires with hexagonal structure were successfully synthesized by the chemical bath deposition technique. The obtained nanowires were characterized by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The SEM micrographs revealed the morphology of ZnO nanowires with the diameter between 170.3 and 481nm and showed that the normal pH of the bath solution, 8.1 is the optimized value to form ZnO nanowires with the hexagonal shape. The compositional (EDX) analysis revealed the elemental compositions of samples and confirmed the presence of Zn and O.

Keywords: crystallite, chemical bath deposition technique, hexagonal, morphology, nanowire

Procedia PDF Downloads 301
3256 Anterior Uveitis Caused by Infection with Cytomegalovirus and Herpes Simplex Virus Type I at Cicendo Eye Hospital Bandung

Authors: Shinta Stri Ayuda Nur Setyaningsih

Abstract:

Anterior uveitis is often triggered by viral infections such as herpes simplex virus (HSV) and cytomegalovirus (CMV). This study aims to provide an overview of the demographic and clinical characteristics of patients with anterior uveitis caused by CMV and HSV infection at PMN Cicendo Eye Hospital Bandung. This study used a retrospective observational method. Data were collected from the medical records of patients who visited the PMN Infection and Immunology Polyclinic at Cicendo Eye Hospital between February and July 2023. The results showed that anterior uveitis associated with HSV and CMV viruses often occurs in the elderly and more in women. The most common clinical symptoms are red eyes and decreased visual acuity, with a gradual onset of symptoms. Complications that often arise are cataracts and glaucoma. This study provides a deeper understanding of anterior uveitis caused by infection with HSV and CMV viruses.

Keywords: uveitis anterior, cytomegavirus, herpes simplex virus type I ELISA

Procedia PDF Downloads 60
3255 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 389
3254 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide

Procedia PDF Downloads 283
3253 Serum 25-Hydroxyvitamin D Levels and Depression in Persons with Human Immunodeficiency Virus Infection: A Cross-Sectional and Prospective Study

Authors: Kalpana Poudel-Tandukar

Abstract:

Background: Human Immunodeficiency Virus (HIV) infection has been frequently associated with vitamin D deficiency and depression. Vitamin D deficiency increases the risk of depression in people without HIV. We assessed the cross-sectional and prospective associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and depression in a HIV-positive people. Methods: A survey was conducted among 316 HIV-positive people aged 20-60 years residing in Kathmandu, Nepal for a cross-sectional association at baseline, and among 184 participants without depressive symptoms at baseline who responded to both baseline (2010) and follow-up (2011) surveys for prospective association. The competitive protein-binding assay was used to measure 25(OH)D levels and the Beck Depression Inventory-Ia method was used to measure depression, with cut off score 20 or higher. Relationships were assessed using multiple logistic regression analysis with adjustment of potential confounders. Results: The proportion of participants with 25(OH)D level of <20ng/mL, 20-30ng/mL, and >30ng/mL were 83.2%, 15.5%, and 1.3%, respectively. Only four participants with 25(OH)D level of >30ng/mL were excluded in the further analysis. The mean 25(OH)D level in men and women were 15.0ng/mL and 14.4ng/mL, respectively. Twenty six percent of participants (men:23%; women:29%) were depressed. Participants with 25(OH)D level of < 20 ng/mL had a 1.4 fold higher odds of depression in a cross-sectional and 1.3 fold higher odds of depression after 18 months of baseline compared to those with 25(OH)D level of 20-30ng/mL (p=0.40 and p=0.78, respectively). Conclusion: Vitamin D may not have significant impact against depression among HIV-positive people with 25(OH)D level below normal ( > 30ng/mL).

Keywords: depression, HIV, Nepal, vitamin D

Procedia PDF Downloads 322
3252 Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India

Authors: Dilip Nath

Abstract:

A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement.

Keywords: Dhansiri, Dimapur, invertebrates, livelihood improvement, protein

Procedia PDF Downloads 139
3251 Protein and MDA (Malondialdehyde) Profil of Bull Sperm and Seminal Plasma After Freezing

Authors: Sri Rahayu, M. Dwi Susan, Aris Soewondo, W. M. Agung Pramana

Abstract:

Semen is an organic fluid (seminal plasma) that contain spermatozoa. Proteins are one of the major seminal plasma components that modulate sperm functionality, influence sperm capacitation and maintaining the stability of the membrane. Semen freezing is a procedure to preserve sperm cells. The process causes decrease in sperm viability due to temperature shock and oxidation stress. Oxidation stress is a disturbance on phosphorylation that increases ROS concentration, and it produces lipid peroxide in spermatozoa membrane resulted in high MDA (malondialdehyde) concentration. The objective of this study was to examine the effect of freezing on protein and MDA profile of bovine sperm cell and seminal plasma after freezing. Protein and MDA of sperm cell and seminal plasma were isolated from 10 sample. Protein profiles was analyzed by SDS PAGE with separating gel 12,5 %. The concentration of MDA was measured by spectrophotometer. The results of the research indicated that freezing of semen cause lost of the seminal plasma proteins with molecular with 20, 10, and 9 kDa. In addition, the result research showed that protein of the sperm (26, 10, 9, 7, and 6 kDa) had been lost. There were difference MDA concentration of seminal plasma and sperm cell were increase after freezing. MDA concentration of seminal plasma before and after freezing were 2.2 and 2.4 nmol, respectively. MDA concentration of sperm cell before and after freezing were 1,5 and 1.8 nmol, respectively. In conclusion, there were differences protein profiles of spermatozoa before and after semen freezing and freezing cause increasing of the MDA concentration.

Keywords: MDA, semen freezing, SDS PAGE, protein profile

Procedia PDF Downloads 261
3250 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria

Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi

Abstract:

Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.

Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies

Procedia PDF Downloads 55
3249 A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase

Authors: Shuofeng Yuan, Bojian Zheng

Abstract:

Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug.

Keywords: influenza, antiviral, viral polymerase, compounds

Procedia PDF Downloads 340
3248 Nano-Zinc Oxide: A Powerful and Recyclable Catalyst for Chemospecific Synthesis of Dicoumarols Based on Aryl Glyoxals

Authors: F. Jafari, S. GharehzadehShirazi, S. Khodabakhshi

Abstract:

An efficient, simple, and environmentally benign procedure for the one-pot synthesis of dicoumarols was reported. The reaction entails the condensation of aryl glyoxals and 4-hydroxyxoumarin in the presence of catalytic amount of zinc oxide nanoparticles (ZnO NPs) as recyclable catalyst in aqueous media. High product yields and use of clean conditions are important factors of green chemistry.Part of our continued interest to achieve high atom economic reactions by the use safe catalysts. The reaction mixture was refluxed with catalytic amount (3 mol%) of zinc oxide nanoparticles.Reducing the amount of toxic waste and byproducts arising from chemical reactions is an important issue in the context of green chemistry. In comparison with commonly organic solvents, the aqueous media is cheaper and more environmentally friendly. Avoiding the use of organic solvents is an important way to prevent waste in chemical processes. In the context of green and sustainable chemistry, one ofthe most promising approaches is the use of water as the reaction media. In recent years, there has been increasing recognition that water is an attractive media for manyorganic reactions. Using water continues to attract wide attention among synthetic chemists in the design of new synthetic methods.

Keywords: zinc oxide, dicoumarol, aryl glyoxal, green chemistry, catalyst

Procedia PDF Downloads 337
3247 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles

Authors: Dada Kolawole Segun

Abstract:

Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.

Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials

Procedia PDF Downloads 71
3246 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 462
3245 Detection of Respiratory Syncytial Virus (hRSV) by PCR Technique in Lower Respiratory Tract Infection (LRTI) in Babylon City

Authors: Amal Raqib Shameran, Ghanim Aboud Al-Mola

Abstract:

Respiratory syncytial virus (hRSV) is the major pathogens of respiratory tract infections (RTI) among infants and children in the world. They are classified in family Paramyxoviridae and sub-family Pneumovirinae. The current work aimed to detect the role of RSV in the lower respiratory tract infection (LRTI) in Hilla, Iraq. The samples were collected from 50 children who were admitted to hospital suffering from lower respiratory tract infections (LRTI). 50 nasal and pharyngeal swabs were taken from patients at the period from January 2010 till April 2011, hospitalized in Hilla Maternity and Children Hospital. The results showed that the proportion of children infected with hRSV accounted for 24% 12/50 with lower respiratory tract infections (LRTI) when they tested by polymerase chain reaction (RT-PCR).

Keywords: respiratory syncytial virus, respiratory tract infections, infants, polymerase chain reaction (PCR)

Procedia PDF Downloads 323
3244 Analysis of Peoples' Adherence to Safety Measures that Curb Ebola Virus Diseases in Nigeria (A Case Study of State of Osun)

Authors: Shittu Bisi Agnes

Abstract:

Ebola virus Diseases outbreak in Nigeria caused a lot of concerns considering the mode of transmission and no known cure discovered. Therefore a lot of safety measures were taken which eventually led to the eradication of the virus in Nigeria. This therefore attempted to determine the various safety measures, how socio-economic characteristic of the people affected adherence to safety measures. And provide reasonable recommendations for total eradication of the virus, future outbreak and general environmental safety Data were collected with the aid of well structured questionnaires and administered 180 randomly selected of the state and oral interview was also utilize. Data collected were analysed using both descriptive tools and inferential statistics vis-a-vis regression analysis. Finding showed that 70.5% was strongly adhere to almost all the measures, 15.2% was fairly advent, 3% was poorly observing the selected measures while 1.3% was in different. 65% of the respondents was strongly aware of the advent of ebola virus diseases, 20% was fairly in awareness, 8.5% was poorly in awareness while 6.55% was in aware of any disease outbreak. Safety measures put forwards were; hand washing, use of hand sanitize-rs, no shaking of hands non-consumption of wildlife games(Bush Meat) and general health and environmental safety measures. It was recommended that policy instrument to increase peoples income will accelerate eradication of diseases as this will enable households to pay for monetary safety measures, health and environmental education, in form of talk shop, workshop, lectures could be organised at the political ward levels, schools, market women, religious bodies functional unions and mass media.

Keywords: ebola diseases, pay, safety, outbreak

Procedia PDF Downloads 586
3243 Identification and Characterization of Nuclear Envelope Protein Interactions

Authors: Mohammed Hakim Jafferali, Balaje Vijayaraghavan, Ricardo A. Figueroa, Ellinor Crafoord, Veronica J. Larsson, Einar Hallberg, Santhosh Gudise

Abstract:

The nuclear envelope which surrounds the chromatin of eukaryotic cells contains more than a hundred transmembrane proteins. Mutations in some genes encoding nuclear envelope proteins give rise to human diseases including neurological disorders. The function of many nuclear envelope proteins is not well established. This is partly because nuclear envelope proteins and their interactions are difficult to study due to the inherent resistance to extraction of nuclear envelope proteins. We have developed a novel method called MCLIP, to identify interacting partners of nuclear envelope proteins in live cells. Using MCLIP, we found three new binding partners of the inner nuclear membrane protein Samp1: the intermediate filament protein Lamin B1, the LINC complex protein Sun1 and the G-protein Ran. Furthermore, using in vitro studies, we show that Samp1 binds both Emerin and Ran directly. We have also studied the interaction between Samp1 and Ran in detail. The results show that the Samp1 binds stronger to RanGTP than RanGDP. Samp1 is the first transmembrane protein known to bind Ran and it is tempting to speculate that Samp1 may provide local binding sites for RanGTP at membranes.

Keywords: MCLIP, nuclear envelope, ran, Samp1

Procedia PDF Downloads 342
3242 Facile Synthetic Process for Lamivudine and Emtricitabine

Authors: Devender Mandala, Paul Watts

Abstract:

Cis-Nucleosides mainly lamivudine (3TC) and emtricitabine (FTC) are an important tool in the treatment of Human immune deficiency virus (HIV), Hepatitis B virus (HBV) and Human T-Lymotropoic virus (HTLV). Lamivudine and emtricitabine are potent nucleoside analog reverse transcriptase inhibitors (nRTI). These two drugs are synthesized by a four-stage process from the starting materials: menthyl glyoxylate hydrate and 1,4-dithane-2,5-diol to produce the 5-hydroxy oxathiolane which upon acetylation with acetic anhydride to yield 5-acetoxy oxathiolane. Then glycosylation of this acetyl product with silyl protected nucleoside to produce the intermediate. The reduction of this intermediates can provide the final targets. Although there are several different methods reported for the synthesis of lamivudine and emtricitabine as a single enantiomer, we required an efficient route, which was suitable for large-scale synthesis to support the development of these compounds. In this process, we successfully prepared the intermediates of lamivudine and emtricitabine without using any solvents and catalyst, thus promoting the green synthesis. All the synthesized compound were confirmed by TLC, GC, Mass, NMR and 13C NMR spectroscopy.

Keywords: emtricitabine, green synthesis, lamivudine, nucleoside

Procedia PDF Downloads 215
3241 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase

Authors: Reshu Saxena, R. K. Tripathi

Abstract:

HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.

Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion

Procedia PDF Downloads 396
3240 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 350
3239 The Role of a Novel DEAD-Box Containing Protein in NLRP3 Inflammasome Activation

Authors: Yi-Hui Lai, Chih-Hsiang Yang, Li-Chung Hsu

Abstract:

The inflammasome is a protein complex that modulates caspase-1 activity, resulting in proteolytic cleavage of proinflammatory cytokines such as IL-1β and IL-18, into their bioactive forms. It has been shown that the inflammasomes play a crucial role in the clearance of pathogenic infection and tissue repair. However, dysregulated inflammasome activation contributes to a wide range of human diseases such as cancers and auto-inflammatory diseases. Yet, regulation of NLRP3 inflammasome activation remains largely unknown. We discovered a novel DEAD box protein, whose biological function has not been reported, not only negatively regulates NLRP3 inflammasome activation by interfering NLRP3 inflammasome assembly and cellular localization but also mitigate pyroptosis upon pathogen evasion. The DEAD-box protein is the first DEAD-box protein gets involved in modulation of the inflammasome activation. In our study, we found that caspase-1 activation and mature IL-1β production were largely enhanced upon LPS challenge in the DEAD box-containing protein- deleted THP-1 macrophages and bone marrow-derived macrophages (BMDMs). In addition, this DEAD box-containing protein migrates from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. The DEAD box-containing protein specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in the recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of the DEAD box-containing protein. In addition to the mechanical study, we also found that this DEAD box protein protects host cells from inflammasome-triggered cell death in response to broad-ranging pathogens such as Candida albicans, Streptococcus pneumoniae, etc., involved in nosocomial infections and severe fever shock. Collectively, our results suggest that this novel DEAD box molecule might be a key therapeutic strategy for various infectious diseases.

Keywords: inflammasome, inflammation, innate immunity, pyroptosis

Procedia PDF Downloads 270
3238 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs

Procedia PDF Downloads 82
3237 Early Transcriptome Responses to Piscine orthoreovirus-1 in Atlantic salmon Erythrocytes Compared to Salmonid Kidney Cell Lines

Authors: Thomais Tsoulia, Arvind Y. M. Sundaram, Stine Braaen, Øyvind Haugland, Espen Rimstad, Øystein Wessel, Maria K. Dahle

Abstract:

Fish red blood cells (RBC) are nucleated, and in addition to their function in gas exchange, they have been characterized as mediators of immune responses. Salmonid RBC are the major target cells of Piscineorthoreovirus (PRV), a virus associated with heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. The activation of antiviral response genesin RBChas previously been described in ex vivo and in vivo PRV-infection models, but not explored in the initial virus encounter phase. In the present study, mRNA transcriptome responses were explored in erythrocytes from individual fish, kept ex vivo, and exposed to purified PRV for 24 hours. The responses were compared to responses in macrophage-like salmon head kidney (SHK-1) and endothelial-like Atlantic salmon kidney (ASK) cells, none of which support PRV replication. The comparative analysis showed that the antiviral response to PRV was strongest in the SHK-1 cells, with a set of 80 significantly induced genes (≥ 2-fold upregulation). In RBC, 46 genes were significantly upregulated, while ASK cells were not significantly responsive. In particular, the transcriptome analysis of RBC revealed that PRV significantly induced interferon regulatory factor 1 (IRF1) and interferon-induced protein with tetratricopeptide repeats 5-like (IFIT9). However, several interferon-regulated antiviral genes which have previously been reported upregulated in PRV infected RBC in vivo (myxovirus resistance (Mx), interferon-stimulated gene 15 (ISG15), toll-like receptor 3 (TLR3)), were not significantly induced after 24h of virus stimulation. In contrast to RBC, these antiviral response genes were significantly upregulated in SHK-1. These results confirm that RBC are involved in the innate immune response to viruses, but with a delayed antiviral response compared to SHK-1. A notable difference is that interferon regulatory factor 1 (IRF-1) is the most strongly induced gene in RBC, but not among the significantly induced genes in SHK-1. Putative differences in the binding, recognition, and response to PRV, and any link to effects on the ability of PRV to replicate remains to be explored.

Keywords: antiviral responses, atlantic salmon, piscine orthoreovirus-1, red blood cells, RNA-seq

Procedia PDF Downloads 177
3236 The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions

Authors: N.Benachour, S. Chouchane, J. P. Chopart

Abstract:

The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties.

Keywords: ammonium chloride, magnetic field, nickel-zinc alloys, co-deposition

Procedia PDF Downloads 256
3235 Development of Transgenic Tomato Immunity to Pepino Mosaic Virus and Tomato Yellow Leaf Curl Virus by Gene Silencing Approach

Authors: D. Leibman, D. Wolf, A. Gal-On

Abstract:

Viral diseases of tomato crops result in heavy yield losses and may even jeopardize the production of these crops. Classical tomato breeding for disease resistance against Tomato yellow leaf curl virus (TYLCV), leads to partial resistance associated with a number of recessive genes. To author’s best knowledge Pepino mosaic virus (PepMV) genetic resistance is not yet available. The generation of viral resistance by means of genetic engineering was reported and implemented for many crops, including tomato. Transgenic resistance against viruses is based, in most cases, on Post Transcriptional Gene Silencing (PTGS), an endogenous mechanism which destroys the virus genome. In this work, we developed immunity against PepMV and TYLCV in a tomato based on a PTGS mechanism. Tomato plants were transformed with a hairpin-construct-expressed transgene-derived double-strand-RNA (tr-dsRNA). In the case of PepMV, the binary construct harbored three consecutive fragments of the replicase gene from three different PepMV strains (Italian, Spanish and American), to provide resistance against a range of virus strains. In the case of TYLCV, the binary vector included three consecutive fragments of the IR, V2 and C2 viral genes constructed in a hairpin configuration. Selected transgenic lines (T0) showed a high accumulation of transgene siRNA of 21-24 bases, and T1 transgenic lines showed complete immunity to PepMV and TYLCV. Graft inoculation displayed immunity of the transgenic scion against PepMV and TYLCV. The study presents the engineering of resistance in tomato against two serious diseases, which will help in the production of high-quality tomato. However, unfortunately, these resistant plants have not been implemented due to public ignorance and opposition against breeding by genetic engineering.

Keywords: PepMV, PTGS, TYLCV, tr-dsRNA

Procedia PDF Downloads 115
3234 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 604
3233 Using Medicinal Herbs in Designing Green Roofs

Authors: Mohamad Javad Shakouri, Behshad Riahipour

Abstract:

Today, the use of medicinal herbs in architecture and green space has a significant effect on the process of calming human and increases the reliability coefficient of design and design flexibility. The current research was conducted with the aim to design green roof and investigate the effect of medicinal herbs such as cress, leek, fenugreek, beet, sweet fennel, green basil, purple basil, and purslane on reducing the number of environmental pollutants (copper, zinc, and cadmium). Finally, the weight of the dry plant and the concentration of elements zinc, lead, and cadmium in the herbs was measured. According to the results, the maximum dry weight (88.10 and 73.79 g) was obtained in beet and purslane respectively and the minimum dry weight (24.12 and 25.21) was obtained in purple basil, and green basil respectively. The maximum amount of element zinc (235 and 213 mg/kg) and the maximum amount of lead (143 mg/kg) were seen in sweet fennel and purple basil. In addition, the maximum amount of cadmium (13 mg/kg) was seen in sweet fennel and purple basil and the minimum amount of lead and cadmium (78 and 7 mg/kg) was seen in green basil, and the minimum amount of zinc (110 mg/kg) was seen in leek. On the other hand, the absorption amount of element lead in the herbs beet and purslane was the same and both absorbed 123 mg/kg lead. Environmentally, if green roofs are implemented extensively and in wide dimensions in urban spaces, they will purify and reduce pollution significantly by absorbing carbon dioxide and producing oxygen.

Keywords: medicinal herbs, green space, green roof, heavy metals, lead, green basil

Procedia PDF Downloads 153
3232 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium

Procedia PDF Downloads 374
3231 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 269