Search results for: shielding equipment
1338 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities
Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos
Abstract:
The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification
Procedia PDF Downloads 4761337 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique
Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido
Abstract:
The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant
Procedia PDF Downloads 1311336 Cardiopulmonary Resuscitation Performance Efficacy While Wearing a Powered Air-Purifying Respirator
Authors: Jun Young Chong, Seung Whan Kim
Abstract:
Introduction: The use of personal protective equipment for respiratory infection control in cardiopulmonary resuscitation (CPR) is a physical burden to healthcare providers. It matters how long CPR quality according to recommended guidelines can be maintained under these circumstances. It was investigated whether chest compression time was appropriate for a 2-minute shift and how long it was maintained in accordance with the guidelines under such conditions. Methods: This prospective crossover simulation study was performed at a single center from September 2020 to October 2020. Five indicators of CPR quality were measured during the first and second sessions of the study period. All participants wore a Level D powered air-purifying respirator (PAPR), and the experiment was conducted using a Resusci Anne manikin, which can measure the quality of chest compressions. Each participant conducted two sessions. In session one, 2-minutes of chest compressions followed by a 2-minute rest was repeated twice; in session two, 1-minute of chest compressions followed by a 1-minute rest was repeated four times. Results: All 34 participants completed the study. The deep and sufficient compression rate was 65.9 ± 13.1 mm in the 1-minute shift group and 61.5 ± 30.5 mm in the 2-minute shift group. The mean depth was 52.8 ±4.3 mm in the 1-minute shift group and 51.0 ± 6.1 mm in the 2-minute shift group. In these two values, there was a statistically significant difference between the two sessions. There was no statistically significant difference in the other CPR quality values. Conclusions: It was suggested that the different standard of current 2-minute to 1-minute cycles due to a significant reduction in the quality of chest compression in cases of CPR with PAPR.Keywords: cardiopulmonary resuscitation, chest compression, personal protective equipment, powered air-purifying respirator
Procedia PDF Downloads 1141335 Administrative Determinants of Students' Sports Participation in Private and Public Secondary Schools in Kwara State, Nigeria
Authors: Danjuma Moudu Momoh
Abstract:
Participation in sports is of immense benefit to the soundness of individual mental and social wellness, particularly among youngsters. The 1980’s and 1990’s compared to 2000’s witnessed great involvement of youngsters in school games arising from the high administrative supports attached to sports. Previous studies in an attempt to increase youngster’s participation in sports had focused more on other factors rather than on administrative factors. This study, therefore, investigated the importance of administrative factors (availability of facilities, availability of equipment, funding, scheduling of sports programme and administrative style of school principals) on students’ sports participation in private and public secondary schools in Kwara State, Nigeria. Descriptive survey research design using validated and structured questionnaire, was adopted. Stratified random sampling technique was used to pick the students both male and female. A total of two thousand five hundred and sixty participants were involved in the study. A reliable coefficient of r=0.82 was obtained for the instruments using Cronbach Alpha. Data were analyzed using multiple regressions to test the hypotheses at 00.5 significant levels. At the end of the study, it was discovered that the relative contributions of administrative factors among the students were: availability of facilities (β=0.314), availability of equipment (β=0.444), funding (β=0.301), scheduling of sports programme (β=0.447), made relative contributions to the dependent variable, administrative style of school principal (β=0.077) did not make significant but minimal contribution to the student’s sports participation.Keywords: administrative determinants, secondary school students, physical activity, sports participation
Procedia PDF Downloads 5501334 A Statistical Analysis on the Comparison of First and Second Waves of COVID-19 and Importance of Early Actions in Public Health for Third Wave in India
Authors: Maitri Dave
Abstract:
Coronaviruses (CoV) is such infectious virus which has impacted globally in a more dangerous manner causing severe lung problems and leaving behind more serious diseases among the people. This pandemic has affected globally and created severe respiratory problems, and damaged the lungs. India has reported the first case of COVID-19 in January 2020. The first wave of COVID-19 took place from April to September of 2020. Soon after, a second peak is also noticed in the month of March 2021, which in turn becomes more dangerous due to a lack of supply of medical equipment. It created resource deficiency globally, specifically in India, where some necessary life-saving equipment like ventilators and oxygenators were not sufficient to cater to the demand-supply ratio effectively. Through carefully examining such a situation, India began to execute the process of vaccination in the month of January 2021 and successfully administered 25,46,71,259 doses of vaccines till now, which is only 15.5% of the total population while only 3.6% of the total population is fully vaccinated. India has authorized the British Oxford–AstraZeneca vaccine (Covishield), the Indian BBV152 (Covaxin) vaccine, and the Russian Sputnik V vaccine for emergency use. In the present study, we have collected all the data state wisely of both first and second wave and analyzed them using MS Excel Version 2019 and SPSS Statistics Version 26. Following the trends, we have predicted the characteristics of the upcoming third wave of COVID-19 and recommended some strategies, early actions, and measures that can be taken by the public health system in India to combat the third wave more effectively.Keywords: COVID-19, vaccination, Covishiled, Coronavirus
Procedia PDF Downloads 2161333 Optimization Technique for the Contractor’s Portfolio in the Bidding Process
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.Keywords: bidding process, internal resources, optimization, contracting portfolio management
Procedia PDF Downloads 1421332 Design and Modeling of Light Duty Trencher
Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu
Abstract:
From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.Keywords: hydraulics, modelling, trenching, ditch
Procedia PDF Downloads 2151331 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas
Authors: Yen Chia-Ju, Cheng Ding-Ruei
Abstract:
This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment
Procedia PDF Downloads 4441330 Coal Preparation Plant:Technology Overview and New Adaptations
Authors: Amit Kumar Sinha
Abstract:
A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.Keywords: intermediate circuit, overlapping process, reflux classifier
Procedia PDF Downloads 1361329 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling
Authors: Ahmad Odeh
Abstract:
Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.Keywords: BIM, lifecycle energy assessment, building automation, energy conservation
Procedia PDF Downloads 1891328 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1531327 Early Screening of Risk Ergonomics among Workers at Madura's Batik Industrial: Rapid Entire Body Assessment and Quick Exposure Checklist
Authors: Abdul Kadir, L. Meily Kurniawidjaja
Abstract:
Batik Madura workers are exposed to many Musculoskeletal Disorders risk factors, particularly Low Back Pain (LBP). This study was conducted as an early detection of ergonomic risk level on Workers Industrial Sentra Batik Madura in Dusun Banyumas, Klampar Subdistrict, Proppo Pamekasan, Madura, East Java. This study includes 12 workers who 11 workers had pain in the upper and lower part of the neck, back, wrist right hand, also 10 workers had pain in the right shoulder. This is a descriptive observational study with cross-sectional approach. Qualitative research by observing workers activity such as draw and putting the wax motif, fabric dyeing, fabric painting, discoloration, washing, and drying. The results are workers have identified ergonomic hazards such as awkward postures, twisting movements, repetitive, and static work postures. Using the method of REBA and QEC, the results get a very high-risk level of activity in each of Madura batik making process is the draw and putting the wax motif, coloring, painting, discoloration, washing, and drying. The level of risk can be reduced by improvement of work equipment include the provision of seats, strut fabric, high settings furnaces, drums, coloring basin, and washing tub.Keywords: activities of Madura's batik, ergonomic risk level, equipment, QEC (Quick Exposure Checklist), REBA (Rapid Entire Body Assessment)
Procedia PDF Downloads 1941326 Software-Defined Architecture and Front-End Optimization for DO-178B Compliant Distance Measuring Equipment
Authors: Farzan Farhangian, Behnam Shakibafar, Bobda Cedric, Rene Jr. Landry
Abstract:
Among the air navigation technologies, many of them are capable of increasing aviation sustainability as well as accuracy improvement in Alternative Positioning, Navigation, and Timing (APNT), especially avionics Distance Measuring Equipment (DME), Very high-frequency Omni-directional Range (VOR), etc. The integration of these air navigation solutions could make a robust and efficient accuracy in air mobility, air traffic management and autonomous operations. Designing a proper RF front-end, power amplifier and software-defined transponder could pave the way for reaching an optimized avionics navigation solution. In this article, the possibility of reaching an optimum front-end to be used with single low-cost Software-Defined Radio (SDR) has been investigated in order to reach a software-defined DME architecture. Our software-defined approach uses the firmware possibilities to design a real-time software architecture compatible with a Multi Input Multi Output (MIMO) BladeRF to estimate an accurate time delay between a Transmission (Tx) and the reception (Rx) channels using the synchronous scheduled communication. We could design a novel power amplifier for the transmission channel of the DME to pass the minimum transmission power. This article also investigates designing proper pair pulses based on the DO-178B avionics standard. Various guidelines have been tested, and the possibility of passing the certification process for each standard term has been analyzed. Finally, the performance of the DME was tested in the laboratory environment using an IFR6000, which showed that the proposed architecture reached an accuracy of less than 0.23 Nautical mile (Nmi) with 98% probability.Keywords: avionics, DME, software defined radio, navigation
Procedia PDF Downloads 791325 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns
Procedia PDF Downloads 3031324 Implementing 3D Printing for 3D Digital Modeling in the Classroom
Authors: Saritdikhun Somasa
Abstract:
3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students.Keywords: 3D digital modeling, 3D digital sculpting, 3D modeling, 3D printing, 3D digital fabrication
Procedia PDF Downloads 1031323 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 671322 Initializing E-Classroom in a Multigrade School in the Philippines
Authors: Karl Erickson I. Ebora
Abstract:
Science and technology are two inseparable terms which bring wonders to all aspects of life such as education, medicine, food production and even the environment. In education, technology has become an integral part as it brings many benefits to the teaching-learning process. However, in the Philippines, being one of the developing countries resources are scarce and not all schools enjoy the fruits brought by technology. Much of this ordeal impacts that of multigrade instruction. These schools are often the last priority in resources allocation since these have limited number of students. In fact, it is not surprising that these schools do not have even a single computer unit much more a computer laboratory. This paper sought to present a plan on how public schools would receive its e-classroom. Specifically, this paper sought to answer questions like the level of the school readiness in terms of facilities and equipment; the attitude of the respondents towards the use of e-classroom; level of teacher’s familiarity in using different e-classroom software and the plans of interventions undertaken by the school to make it e-classroom ready. After gathering and analysing the necessary data, this paper came up with the following conclusions that in terms of facilities and equipment, Guisguis Talon Elementary School (Main), though a multigrade school, is ready to receive e-classroom.; that the respondents show positive disposition in technology utilization in teaching after they strongly agree that technology plays essential role in the teaching-learning process. Also, they strongly agree that technology is a good motivator; it makes the teaching and learning more interesting and effective; it makes teaching easy; and that technology enhances student’s learning. Additionally, Teacher-respondents in Guisguis Talon Elementary School (Main) show familiarity in using software. They are very familiar with MS Word; MS Excel; MS PowerPoint; and internet and email. Moreover, they are very familiar with basic e-classroom computer operations and basic application software. They are very familiar with MS office and can do simple editing and formatting; in accessing and saving information from CD/DVD, external hard drives, USB and the like; and in browsing effectively different search engines and educational sites, download and upload files. Likewise respondents strongly agree to the interventions undertaken by the school to make it e-classroom ready. They strongly agree that funding and support are needed by the school; that stakeholders should be encouraged to consider donating of equipment; and that school and community should try to mobilize their resources in order to help the school; that the teachers should be provided with trainings in order for them to be technologically competent; and that principals and administrators should motivate their teachers to undergo continuous professional development.Keywords: e-classroom, multi-grade school, DCP, classroom computers
Procedia PDF Downloads 1991321 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study
Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand
Abstract:
Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.Keywords: holography, 3D scans, hologram box, metrology, point cloud
Procedia PDF Downloads 891320 Reduction in Hospital Acquire Infections after Intervention of Hand Hygiene and Personal Protective Equipment at COVID Unit Indus Hospital Karachi
Authors: Aisha Maroof
Abstract:
Introduction: Coronavirus Disease 2019 (COVID-19) is spreading rapidly around the world with devastating consequences on patients, health care workers and health systems. Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU) and they are at high risk to obtain the hospital acquire bloodstream infection (HAIs) such as central line associated bloodstream infection (CLABSI), catheter associated urinary tract infections (CAUTI) and laboratory confirm bloodstream infection (LCBSI). The chances of infection transmission increase when healthcare worker’s (HCWs) practice is inappropriate. Risk related to hand hygiene (HH) and personal protective equipment (PPE) as regards multidrug-resistant organism transmission: use of multiple gloving instead of HH and incorrect use of PPE can lead to a significant increase of device-related infections. As it reaches low- and middle-income countries, its effects could be even more, because it will be difficult for them to react aggressively to the pandemic. HAIs are one of the biggest medical concerns, resulting in increased mortality rates. Objective: To assess the effect of intervention on compliance of hand hygiene and PPE among HCWs reduce the rate of HAI in COVID-19 patients. Method: An interventional study was done between July to December, 2020. CLABSI, CAUTI and LCBSI data were collected from the medical record and direct observation. There were total of 50 Nurses, 18 doctors and all patients with laboratory-confirmed severe COVID-19 admitted to the hospital were included in this research study. Respiratory tract specimens were obtained after the first 48 h of ICU admission. Practices were observed after and before intervention. Education was provided based on WHO guidelines. Results: During the six months of study July to December, the rate of CLABSI, CAUTI and LCBSI pre and post intervention was reported. CLABSI rate decreasedd from 22.7 to 0, CAUTI rate was decreased from 1.6 to 0, LCBSI declined from 3.3 to 0 after implementation of intervention. Conclusion: HAIs are an important cause of morbidity and mortality. Most of the device related infections occurs due to lack of correct use of PPE and hand hygiene compliance. Hand hygiene and PPE is the most important measure to protect patients, through education it can be improved the correct use of PPE and hand hygiene compliance and can reduce the bacterial infection in COVID-19 patients.Keywords: hospital acquire infection, healthcare workers, hand hygiene, personal protective equipment
Procedia PDF Downloads 1271319 Optimization of Interface Radio of Universal Mobile Telecommunication System Network
Authors: O. Mohamed Amine, A. Khireddine
Abstract:
Telecoms operators are always looking to meet their share of the other customers, they try to gain optimum utilization of the deployed equipment and network optimization has become essential. This project consists of optimizing UMTS network, and the study area is an urban area situated in the center of Algiers. It was initially questions to become familiar with the different communication systems (3G) and the optimization technique, its main components, and its fundamental characteristics radios were introduced.Keywords: UMTS, UTRAN, WCDMA, optimization
Procedia PDF Downloads 3831318 Analytic Hierarchy Process for the Container Terminal Choice from Multiple Terminals within the Port of Colombo
Authors: G. M. B. P. Abeysekara, W. A. D. C. Wijerathna
Abstract:
Terminal choice from the multiple terminals region is not a simple decision and it is very complex, because shipping lines should consider on influential factors for the terminal choice at once according to their requirement. Therefore, terminal choice is a multiple criterion decision making (MCDM) situation under a specially designed decision hierarchy. Identification of perspective of shipping lines regarding terminal choice is vital important for the decision makers regarding container terminals. Thus this study is evaluated perception on main and feeder shipping lines’ regarding port of Colombo container terminals, and ranked terminals according to shipping lines preference. Analytic Hierarchy Process (AHP) model is adapted to this study, since it has features similar to the MCDM, it is weighted every influential factor by using pair wise comparisons, and consistency of the decision makers’ judgments are checked to evaluate trustworthiness of gathered data. And rating method is used to rank the terminals within Port of Colombo by assigning particular preference values with respect to the criteria and sub criteria. According to the findings of this study, main lines’ mainly concern on water depth of approach channel, depth of berth, handling charges and handling equipment facilities. And feeder lines’ main concerns were handling equipment facilities, loading and discharging efficiency, depth of berth and handling charges. Findings of the study suggested concentrating regarding the emphasized areas in order to enhance the competitiveness of terminals, and to increase number of vessel callings at the Port of Colombo. Application of above finding of the terminals within Port of Colombo lead to a far better competition among terminals and would uplift the overall level of services.Keywords: AHP, Main and feeder shipping lines, criteria, sub criteria
Procedia PDF Downloads 4201317 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process
Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski
Abstract:
Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction
Procedia PDF Downloads 1371316 Surface Modified Nano-Diamond/Polyimide Hybrid Composites
Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman
Abstract:
Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).Keywords: hybrid materials, nanodiamond, polyimide, polymer
Procedia PDF Downloads 2421315 Identification of Risks Associated with Process Automation Systems
Authors: J. K. Visser, H. T. Malan
Abstract:
A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.Keywords: distributed control system, identification of risks, information technology, process automation system
Procedia PDF Downloads 1391314 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow
Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya
Abstract:
Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.Keywords: acoustic metamaterials, noise, functional materials, ventilated
Procedia PDF Downloads 821313 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia
Authors: Michael Wright, Tiago Costa
Abstract:
The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.Keywords: fine grained, As-rolled, long products, process control, metallurgy
Procedia PDF Downloads 3001312 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration
Authors: Marimuthu Gurusamy
Abstract:
In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration
Procedia PDF Downloads 4511311 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow
Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya
Abstract:
Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control
Procedia PDF Downloads 1081310 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company
Authors: Korpapa Srisamai, Pawee Siriruk
Abstract:
The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.Keywords: demand forecast, reorder point, lost sale, dead stock
Procedia PDF Downloads 1211309 The Development, Validation, and Evaluation of the Code Blue Simulation Module in Improving the Code Blue Response Time among Nurses
Authors: Siti Rajaah Binti Sayed Sultan
Abstract:
Managing the code blue event is stressful for nurses, the patient, and the patient's families. The rapid response from the first and second responders in the code blue event will improve patient outcomes and prevent tissue hypoxia that leads to brain injury and other organ failures. Providing 1 minute for the cardiac massage and 2 minutes for defibrillation will significantly improve patient outcomes. As we know, the American Heart Association came out with guidelines for managing cardiac arrest patients. The hospital must provide competent staff to manage this situation. It can be achieved when the staff is well equipped with the skill, attitude, and knowledge to manage this situation with well-planned strategies, i.e., clear guidelines for managing the code blue event, competent staff, and functional equipment. The code blue simulation (CBS) was chosen in the training program for code blue management because it can mimic real scenarios. Having the code blue simulation module will allow the staff to appreciate what they will face during the code blue event, especially since it rarely happens in that area. This CBS module training will help the staff familiarize themselves with the activities that happened during actual events and be able to operate the equipment accordingly. Being challenged and independent in managing the code blue in the early phase gives the patient a better outcome. The CBS module will help the assessor and the hospital management team with the proper tools and guidelines for managing the code blue drill accordingly. As we know, prompt action will benefit the patient and their family. It also indirectly increases the confidence and job satisfaction among the nurses, increasing the standard of care, reducing the complication and hospital burden, and enhancing cost-effective care.Keywords: code blue simulation module, development of code blue simulation module, code blue response time, code blue drill, cardiorespiratory arrest, managing code blue
Procedia PDF Downloads 65