Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5610

Search results for: plant classification

5280 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
5279 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba

Abstract:

In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 499
5278 Agronomic Response of Fluted Pumpkin (Telfairia occidentalis Hook. f.) to Planting Densities and Fertilizer Application

Authors: Falodun E. J., Ogbeifun S. O.

Abstract:

The objectives of this study were to investigate the yield, nutrient concentration, and uptake of fluted pumpkin (Telfairia occidentalis Hook. f.) in response to spacing and fertilizer application. Two fluted pumpkin plant populations (10,000 and 20,000 plants ha⁻¹), D1 and D2, were evaluated at three levels of NPK fertilizer (F₁, 20 t ha⁻¹ poultry manure, F₂, 300 kg ha⁻¹ NPK 15:15:15 and F₃, 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ NPK 15:15:15) using a factorial arrangement in a randomized complete block design (RCBD) with three replications. Leaf length, breadth, and the number of leaves were significantly increased at a lower plant population of 10,000 plants ha⁻¹ while herbage yield increased with a higher plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15. Potassium (K) concentration was significantly (p < 0.05) higher at 10,000 plants ha⁻¹ and Iron (Fe) uptake was higher with combine application of organic and inorganic fertilizer (F3). To maximize the good herbage yield of fluted pumpkins, farmers in this locality should adopt a plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 (D2F2) or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15 (D2F3).

Keywords: fertilizers, fluted pumpkin, herbage yield, plant population

Procedia PDF Downloads 188
5277 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 349
5276 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot

Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.

Abstract:

Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.

Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud

Procedia PDF Downloads 72
5275 Investigation of an Alkanethiol Modified Au Electrode as Sensor for the Antioxidant Activity of Plant Compounds

Authors: Dana A. Thal, Heike Kahlert, Fritz Scholz

Abstract:

Thiol molecules are known to easily form self-assembled monolayers (SAM) on Au surfaces. Depending on the thiol’s structure, surface modifications via SAM can be used for electrode sensor development. In the presented work, 1-decanethiol coated polycrystalline Au electrodes were applied to indirectly assess the radical scavenging potential of plant compounds and extracts. Different plant compounds with reported antioxidant properties as well as an extract from the plant Gynostemma pentaphyllum were tested for their effectiveness to prevent SAM degradation on the sensor electrodes via photolytically generated radicals in aqueous media. The SAM degradation was monitored over time by differential pulse voltammetry (DPV) measurements. The results were compared to established antioxidant assays. The obtained data showed an exposure time and concentration dependent degradation process of the SAM at the electrode’s surfaces. The tested substances differed in their capacity to prevent SAM degradation. Calculated radical scavenging activities of the tested plant compounds were different for different assays. The presented method poses a simple system for radical scavenging evaluation and, considering the importance of the test system in antioxidant activity evaluation, might be taken as a bridging tool between in-vivo and in-vitro antioxidant assay in order to obtain more biologically relevant results in antioxidant research.

Keywords: alkanethiol SAM, plant antioxidant, polycrystalline Au, radical scavenger

Procedia PDF Downloads 298
5274 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 315
5273 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 320
5272 The Overexpression of Horsegram MURLK Improves Regulation of Cell Death and Defense Responses to Microbial Pathogens

Authors: Shikha Masand, Sudesh Kumar Yadav

Abstract:

Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a horsegram [Macrotyloma uniflorum (Lam.) Verdc.] malectin-like leucine rich receptor-like protein kinase (RLK) gene MuRLK. The functional MuRLK protein preferentially binds to mannose and N-acetyl glucosamine residues. MuRLK exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Over-expression of MuRLK in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato, Alternaria brassicicola and Hyaloperonospora arabidopsidis, are associated with elevated ROS bursts, MAPK activation, thus ultimately leading to hypersensitive cell death. Moreover, salicylic acid-dependent and jasmonic acid-dependent defense responses are also enhanced in the MuRLK-overexpressed plants that lead to HR-induced cell death. Together, these results suggest that MuRLK plays a key role in the regulation of plant cell death, early and late defense responses after the recognition of microbial pathogens.

Keywords: horsegram, Pseudomonas syringae pv. tomato, MuRLK, ROS burst, cell death, plant defense

Procedia PDF Downloads 248
5271 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 507
5270 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 173
5269 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
5268 Antifungal Activity of Medicinal Plants Used Traditionally for the Treatment of Fungal Infections and Related Ailments in South Africa

Authors: T. C. Machaba, S. M. Mahlo

Abstract:

The current study investigates the antifungal properties of crude plant extracts from selected medicinal plant species. Eight plant species used by the traditional healers and local people to treat fungal infections were selected for further phytochemical analysis and biological assay. The selected plant species were extracted with solvent of various polarities such as acetone, methanol, ethanol, hexane, dichloromethane, ethyl acetate and water. Leaf, roots and bark extracts of Maerua juncea Pax, Albuca seineri (Engl & K. Krause) J.C Manning & Goldblatt, Senna italica Mill., Elephantorrhiza elephantina (Burch.) Skeels, Indigofera circinata Benth., Schinus molle L., Asparagus buchananii Bak., were screened for antifungal activity against three animal fungal pathogens (Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans). All plant extracts were active against the tested microorganisms. Acetone, dichloromethane, hexane and ethanol extracts of Senna italica and Elephantorrhiza elephantine had excellent activity against Candida albicans and A. fumigatus with the lowest MIC value of 0.02 mg/ml. Bioautography assay was used to determine the number of antifungal compounds presence in the plant extracts. No active compounds were observed in plant extracts of Indigofera circinnata, Schinus molle and Pentarrhinum insipidum with good antifungal activity against C. albicans and A. fumigatus indicating possible synergism between separated metabolites.

Keywords: antifungal activity, bioautography, ethnobotanical survey, minimum inhibitory concentration

Procedia PDF Downloads 350
5267 Investigation of Medicinal Applications of Maclura Pomifera Extract

Authors: Mahdi Asghari Ozma

Abstract:

Background and Objective:Maclurapomifera (Rafin.) Schneider, known as osage orange, is a north american native plant which has multiple applications in herbal medicine. The extract of this plant has many therapeutic effects, including antimicrobial, anti-tumor, anti-inflammation, etc., that discussed in this study. Materials and Methods: For this study, the keywords "Maclurapomifera", "osage orange, ""herbal medicine ", and "plant extract" in the databases PubMed and Google Scholar between 2002 and 2021 were searched, and 20 articles were chosen, studied and analyzed. Results: Due to the increased resistance of microbes to antibiotics, the need for antimicrobial plants is increasing. Maclurapomifera is one of the plants with antimicrobial properties that can affect all microbes, especially Gram-negative bacteria, and fungi. This plant also has anti-tumor, anti-inflammatory, anti-oxidant, anti-aging, antiviral, anti-fungal, anti-ulcerogenic, anti-diabetic, and anti-nociceptive effects, which can be used as a substance with many amazing therapeutic applications. Conclusion: These results suggest that the extract of Maclurapomifera can be used in clinical medicine as a remedial agent, which can be substituted for chemical drugs or help them in the treatment of diseases.

Keywords: maclura pomifera, osage orange, herbal medicine, plant extract

Procedia PDF Downloads 241
5266 Quantitative Elemental Analysis of Cyperus rotundus Medicinal Plant by Particle Induced X-Ray Emission and ICP-MS Techniques

Authors: J. Chandrasekhar Rao, B. G. Naidu, G. J. Naga Raju, P. Sarita

Abstract:

Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques have been employed in this work to determine the elements present in the root of Cyperus rotundus medicinal plant used in the treatment of rheumatoid arthritis. The elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, and Sr were commonly identified and quantified by both PIXE and ICP-MS whereas the elements Li, Be, Al, As, Se, Ag, Cd, Ba, Tl, Pb and U were determined by ICP-MS and Cl, K, Ca, Ti and Br were determined by PIXE. The regional variation of elemental content has also been studied by analyzing the same plant collected from different geographical locations. Information on the elemental content of the medicinal plant would be helpful in correlating its ability in the treatment of rheumatoid arthritis and also in deciding the dosage of this herbal medicine from the metal toxicity point of view. Principal component analysis and cluster analysis were also applied to the data matrix to understand the correlation among the elements.

Keywords: PIXE, CP-MS, elements, Cyperus rotundus, rheumatoid arthritis

Procedia PDF Downloads 333
5265 Benzpyrimoxan: An Insecticide for the Control of Rice Plant Hoppers

Authors: E. Satoh, R. Kasahara, T. Aoki, K. Fukatsu, D. Venkata Ramanarao, H. Harayama, T. Murata, A. Suwa

Abstract:

Rice plant hoppers (Hemiptera: Delphacidae) have been causing extensive economic damage in rice and are considered as serious threat in rice producing countries of Asia. They have developed resistance to major groups of chemical insecticide, and severe outbreaks occur commonly throughout Asia. To control these nuisance pests, Nihon Nohyaku Co., Ltd., recently discovered an insecticide, benzpyrimoxan (proposed ISO name), which is under development as NNI-1501 (development code). Benzpyrimoxan has a unique chemical structure which contains benzyloxy and cyclic acetal groups on pyrimidine moiety (5-(1,3-dioxan-2-yl)-4-[4- (trifluoromethyl)benzyloxy]pyrimidine). In order to clarify the biological properties of benzpyrimoxan, we conducted several experiments and found the following results. Benzpyrimoxan has high activity against nymphal stages of rice plant hoppers without any adulticidal activity. It provides excellent and long lasting control against rice plant hoppers, including populations that have developed resistance to several other chemical groups of insecticide. The study on its mode of action is undergoing. These features highlight the versatility of this insecticide as an effective and valuable tool from the viewpoints of insecticide resistance management and integrated pest management program. With the use of benzpyrimoxan, farmers shall be able to lead the best yield potential by keeping the population density of rice plant hoppers and associated virus diseases under control.

Keywords: acetal, benzpyrimoxan, insecticide, NNI-1501, pyrimidine, rice plant hoppers

Procedia PDF Downloads 209
5264 Functional Relevance of Flavanones and Other Plant Products in the Remedy of Parkinson's Disease

Authors: Himanshi Allahabadi

Abstract:

Plants have found a widespread use in medicine traditionally, including the treatment of cognitive disorders, especially, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In terms of indigenous medicine, it has been found that many potential drugs can be isolated from plant products, including those for dementia. Plant product is widely distributed in plant kingdom and forms a major antioxidant source in the human diet, is Polyphenols. There are four important groups of polyphenols: phenolic acids, flavonoids, stilbenes, and lignans. Due to their high antioxidant capacity, interest in their study has greatly increased. There are several methods for discovering and characterizing active compounds isolated from plant sources, now available. The results obtained so far seem fulfilling, but additionally, mechanism of functioning of polyphenols at the molecular level, as well as their application in human health need to be researched upon. Also, even though the neuroprotective effects of flavonoids have been much talked about, much of the data in support of this statement has come from animal studies rather than human studies. This review is based on a multi-faceted study of medicinal plants, i.e. phytochemicals, with special focus on flavanones and their relevance in remedy of Parkinson's disease.

Keywords: dementia, parkinson's disease, flavanones, polyphenols, substantia nigra

Procedia PDF Downloads 307
5263 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber

Authors: Solomon Tilahun Desisa, Muktar Seid Hussen

Abstract:

Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.

Keywords: Hibiscus macranthus, bast fiber, extraction, characterization

Procedia PDF Downloads 210
5262 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
5261 The Impact of Different Rhizobium leguminosarum Strains on the Protein Content of Peas and Broad Beans

Authors: Alise Senberga, Laila Dubova, Liene Strauta, Ina Alsina, Ieva Erdberga

Abstract:

Legume symbiotic relationship with nitrogen fixating bacteria Rhizobim leguminosarum is an important factor used to improve the productivity of legumes, due to the fact that rhizobia can supply plant with the necessary amount of nitrogen. R. leguminosarum strains have shown different activity in fixing nitrogen. Depending on the chosen R. leguminosarum strain, host plant biochemical content can be altered. In this study we focused particularly on the changes in protein content in beans (using two different varieties) and peas (five different varieties) due to the use of several different R. leguminosarum strains (four strains for both beans and peas). Overall, the protein content increase was observed after seed inoculation with R. leguminosarum. Strain and plant cultivar interaction specification was observed. The effect of R. leguminosarum inoculation on the content of protein was dependent on the R. leguminosarum strain used. Plant cultivar also appeared to have a decisive role in protein content formation with the help of R. leguminosaru.

Keywords: legumes, protein content, rhizobia strains, soil

Procedia PDF Downloads 521
5260 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 93
5259 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 765
5258 Normalized Difference Vegetation Index and Hyperspectral: Plant Health Assessment

Authors: Srushti R. Joshi, Ujjwal Rakesh, Spoorthi Sripad

Abstract:

The rapid advancement of remote sensing technologies has revolutionized plant health monitoring, offering valuable insights for precision agriculture and environmental management. This paper presents a comprehensive comparative analysis between the widely employed normalized difference vegetation index (NDVI) and state-of-the-art hyperspectral sensors in the context of plant health assessment. The study aims to elucidate the weigh ups of spectral resolution. Employing a diverse range of vegetative environments, the research utilizes simulated datasets to evaluate the performance of NDVI and hyperspectral sensors in detecting subtle variations indicative of plant stress, disease, and overall vitality. Through meticulous data analysis and statistical validation, this study highlights the superior performance of hyperspectral sensors across the parameters used.

Keywords: normalized difference vegetation index, hyperspectral sensor, spectral resolution, infrared

Procedia PDF Downloads 65
5257 Classification of Cosmological Wormhole Solutions in the Framework of General Relativity

Authors: Usamah Al-Ali

Abstract:

We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated.

Keywords: general relativity, Einstein field equations, energy conditions, cosmological wormhole

Procedia PDF Downloads 63
5256 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 339
5255 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula

Authors: Pragnyashree Mishra, Shradhanjali Mohapatra

Abstract:

The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .

Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid

Procedia PDF Downloads 464
5254 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 115
5253 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation

Authors: Vadim Vagin, Marina Fomina, Oleg Morosin

Abstract:

This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.

Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization

Procedia PDF Downloads 442
5252 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 131
5251 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria

Authors: Hamisu Jibril

Abstract:

The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.

Keywords: species diversity, urban kano, dryland environment, vegetation sampling

Procedia PDF Downloads 59