Search results for: mortality prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3509

Search results for: mortality prediction

3179 Insecticidal Effects of the Wettable Powder Formulations of Plant Extracts on Cotton Bollworm, Helicoverpa armigera (Lep. Noctuidae)

Authors: Reza Sadeghi, Maryam Nazarahari

Abstract:

Due to the numerous side effects of chemical pesticides, in this research, to provide the practical use of herbal compounds, the extracts of the two plants of thyme and eucalyptus were extracted by using water, 70% ethanol, and n-hexane solvents via percolation method and then formulated as wettable powders. The mortality rates of cotton bollworm (Helicoverpa armigera) were investigated under different concentrations of ethanolic, hexanic, and aqueous extracts of thyme and eucalyptus and their formulations in laboratory conditions. The results showed that the used concentrations, types of solvents, and sorts of formulations significantly affected the mortality rates of cotton bollworm larvae during the exposure period of 24 h.

Keywords: cotton bollworm, eucalyptus, formulation, thyme, toxicity

Procedia PDF Downloads 96
3178 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: aesthetics, crease line, cropped straight leg pants, knee width

Procedia PDF Downloads 190
3177 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 58
3176 Breast Cancer Risk Factors: A Big Data Analysis of Black and White Women in the USA

Authors: Tejasvi Parupudi, Mochen Li, Lakshya Mittal, Ignacio G. Camarillo, Raji Sundararajan

Abstract:

With breast cancer becoming a global pandemic, it is very important to assess a woman’s risk profile accurately in a timely manner. Providing an estimate of the risk of developing breast cancer to a woman gives her an opportunity to consider options to decrease this risk. Women at low risk may be suggested yearly screenings whereas women with a high risk of developing breast cancer would be candidates for aggressive surveillance. Fortunately, there is a set of risk factors that are used to predict the probability of a woman being diagnosed with breast cancer in the future. Studying risk factors and understanding how they correlate to cancer is important for early diagnosis, prevention and reducing mortality rates. The effect of crucial risk factors among black and white women was compared in this study. The various risk factors analyzed include breast density, age, cancer in a first-degree relative, menopausal status, body mass index (BMI) and prior breast cancer diagnosis, etc. Breast density, age at first full-term birth and BMI were utilized in this study as important risk factors for the comparison of incidence rates between women of black and white races in the USA. Understanding the differences could lead to the development of solutions to reduce disparity in mortality rates among black women by improving overall access to care.

Keywords: big data, breast cancer, risk factors, incidence rates, mortality, race

Procedia PDF Downloads 278
3175 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 152
3174 Diarrheal Management Practices in Children Under Five Years and Its Associated Factors Attending Health Clinic in Kalimantan Timur Indonesia

Authors: Tri Murti, Muhammad Hanafiah Juni, Hejar Abdul Rahman, Salmiah Binti Said

Abstract:

The diarrhoeal disease continues to be a leading cause of childhood mortality in countries such as Indonesia, where it is estimated to be responsible for 300,000 deaths annually in children under the age of years. Morbidity survey the Ministry of Health of Indonesia from 2000 to 2010 showed incidence diarrhoea remains a leading cause of infant mortality. Causes of death from diarrhoea is related to poor governance both at home and in health facilities. Despite the improvement of health facilities and government effort to reduce the occurrence of diarrhoea among children and death from diarrhoea, the incidence of diarrhoea among children area still high.

Keywords: management diarrheal disease, practices mother, treatment, diarrhoea among children

Procedia PDF Downloads 419
3173 Prognostic Factors for Mortality and Duration of Admission in Malnourished Hospitalized, Elderly Patients: A Cross-Sectional Study

Authors: Christos E. Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Tamta Sirbilatze, Ifigenia Apostolou, Christina Kordali, Konstantina Panouria, Kostas Argyros, Georgios Mavras

Abstract:

Malnutrition in hospitalized patients is related to increased morbidity and mortality. Purpose of our study was to assess nutritional status of hospitalized, elderly patients with various nutritional scores and to detect unfavorable prognostic factors, related to increased mortality and extended duration of admission. Methods: 150 patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). The following data were incorporated in analysis: Anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits and mediterranean diet (assessed by MedDiet score), cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were the mortality (from admission until 6 months afterwards) and duration of admission, compared to national guidelines for closed consolidated medical expenses. Mann-Whitney two-sample statistics or t-test was used for group comparisons and Spearman or Pearson coefficients for testing correlation between variables. Results: Normal nutrition was assessed in 54/150 (36%), 92/150 (61.3%) and in 106/150 (70.7%) of patients, according to full MNA, MUST and sNAQ questionnaires respectively. Mortality rate was 20.7% (31/150 patients). The patients who died until 6 months after admission had lower BMI (24±4.4 vs 26±4.8, p=0.04) and albumin levels (2.9±0.7 vs 3.4±0.7, p=0.002), significantly lower full MNA (14.5±7.3 vs 20.7±6, p<0.0001) and short-form MNA scores (7.3±4.2 vs 10.5±3.4, p=0.0002) compared to non-dead one. In contrast, the aforementioned patients had higher MUST (2.5±1.8 vs 0.5±1.02, p=<0.0001) and sNAQ scores (2.9±2.4 vs 1.1±1.3, p<0.0001). Additionally, they showed significantly lower MedDiet (23.5±4.3 vs 31.1±5.6, p<0.0001) and IPAQ scores (37.2±156.2 vs 516.5±1241.7, p<0.0001) compared to remaining one. These patients had extended hospitalization [5 (0-13) days vs 0 (-1-3) days, p=0.001]. Patients who admitted due to cancer depicted higher mortality rate (10/13, 77%), compared to those who admitted due to infections (12/73, 18%), stroke (4/15, 27%) or other causes (4/49, 8%) (p<0.0001). Extension of hospitalization was negatively correlated to both full (Spearman r=-0.35, p<0.0001) and short-form MNA (Spearman r=-0.33, p<0.0001) and positively correlated to MUST (Spearman r=0.34, p<0.0001) and sNAQ (Spearman r=0.3, p=0.0002). Additionally, the extension was inversely related to MedDiet score (Spearman r=-0.35, p<0.0001), IPAQ score (Spearman r=-0.34, p<0.0001), albumin levels (Pearson r=-0.36, p<0.0001), Ht (Pearson r=-0.2, p=0.02) and Hb (Pearson r=-0.18, p=0.02). Conclusion: A great proportion of elderly, hospitalized patients are malnourished or at risk of malnutrition. All nutritional scores, physical activity and albumin are significantly related to mortality and increased hospitalization.

Keywords: dietary habits, duration of admission, malnutrition, prognostic factors for mortality

Procedia PDF Downloads 293
3172 Analysis of the Treatment Hemorrhagic Stroke in Multidisciplinary City Hospital №1 Nur-Sultan

Authors: M. G. Talasbayen, N. N. Dyussenbayev, Y. D. Kali, R. A. Zholbarysov, Y. N. Duissenbayev, I. Z. Mammadinova, S. M. Nuradilov

Abstract:

Background. Hemorrhagic stroke is an acute cerebrovascular accident resulting from rupture of a cerebral vessel or increased permeability of the wall and imbibition of blood into the brain parenchyma. Arterial hypertension is a common cause of hemorrhagic stroke. Male gender and age over 55 years is a risk factor for intracerebral hemorrhage. Treatment of intracerebral hemorrhage is aimed at the primary pathophysiological link: the relief of coagulopathy and the control of arterial hypertension. Early surgical treatment can limit cerebral compression; prevent toxic effects of blood to the brain parenchyma. Despite progress in the development of neuroimaging data, the use of minimally invasive techniques, and navigation system, mortality from intracerebral hemorrhage remains high. Materials and methods. The study included 78 patients (62.82% male and 37.18% female) with a verified diagnosis of hemorrhagic stroke in the period from 2019 to 2021. The age of patients ranged from 25 to 80 years, the average age was 54.66±11.9 years. Demographic, brain CT data (localization, volume of hematomas), methods of treatment, and disease outcome were analyzed. Results. The retrospective analyze demonstrate that 78.2% of all patients underwent surgical treatment: decompressive craniectomy in 37.7%, craniotomy with hematoma evacuation in 29.5%, and hematoma draining in 24.59% cases. The study of the proportion of deaths, depending on the volume of intracerebral hemorrhage, shows that the number of deaths was higher in the group with a hematoma volume of more than 60 ml. Evaluation of the relationship between the time before surgery and mortality demonstrates that the most favorable outcome is observed during surgical treatment in the interval from 3 to 24 hours. Mortality depending on age did not reveal a significant difference between age groups. An analysis of the impact of the surgery type on mortality reveals that decompressive craniectomy with or without hematoma evacuation led to an unfavorable outcome in 73.9% of cases, while craniotomy with hematoma evacuation and drainage led to mortality only in 28.82% cases. Conclusion. Even though the multimodal approaches, the development of surgical techniques and equipment, and the selection of optimal conservative therapy, the question of determining the tactics of managing and treating hemorrhagic strokes is still controversial. Nevertheless, our experience shows that surgical intervention within 24 hours from the moment of admission and craniotomy with hematoma evacuation improves the prognosis of treatment outcomes.

Keywords: hemorragic stroke, Intracerebral hemorrhage, surgical treatment, stroke mortality

Procedia PDF Downloads 109
3171 Effective of Different Doses of Bacterial Insecticide Against Trogoderma Granarium (Everts)

Authors: Fatima Huda Hallak

Abstract:

The current study aimed to evaluate the activity of bacterial insecticide Vertinic against the second star larvae of Trogoderma granarium (Everts) by four treatments: A, B, C, D, at seven concentrations: 0.001, 0.01, 0.1,1,10,100,1000 PPM. The mortality rate of larvae was 100% at concentrations 10 and 100 in treatments A and B after 24 hours and after 48 hours in treatment D at 1 PPM. The efficiency of treatment A was greater as compared to treatment B at all concentrations and all exposure times. The efficiency of treatment D was greater as compared to treatment C; for example, at 0.001, 0.01, 0.1, 1 PPM, after 120 hours, the Mortality rate of larve was 6.76, 13.33, 43.33, 100% in treatment D, which it was 0.00, 0.00, 23.33, 96.67%, respectively in the treatment C.

Keywords: bacterial insecticide, trogoderma granarium (everts), fourth star larvae, vertimic

Procedia PDF Downloads 56
3170 Biology of Salema (Sarpa Salpa (L.)) and Population off Gökceada (Northern Aegean Sea, Türkiye): A Macro herbivore Species Living in Sea Grass Beds

Authors: Zeliha Erdogan, Hatice Torcu Koc

Abstract:

The fish, Sarpa salpa (L.), is one of the main macroherbivores in the Mediterranean. A total of 600 Salema individuals were collected from around Gökçeada, Sea of Northern Aegean, between January 2014 and January 2015 in order to evaluate some information on the biology of the Salema population. For this aim, measurements of the Salema were obtained using a caliper. The age readings were made from otoliths. The population was composed of 6 age classes (I-VI). The total lengths and total weights of sampled fish were determined to be ranged from 12.5 to 33.1 cm and 33.57 to 559.33 g, respectively. Length-weight relationship for all individuals was calculated as W=0.0085*L3.1723, R2=0.9524. Growth parameters were determined as L∞= 35.55cm, k=0.31, t0= -9.2, '=2.60. As the sexual ratio was 1.08:1 (M: F), the Salema population consisted of 51.66% male and 47.5% female individuals. The highest average condition factors were observed for females in May (1.68) and for males in May (1.67). According to gonad somatic index values, the spawning period was determined twice a year in spring (April) and autumn (October). The highest average hepatosomatix index value was observed for all individuals in May and December. It was estimated that total (Z) mortality, natural (M) mortality, and fishing (F) mortality rates were Z=0.44 year-1, M=0.064 year-1 and F=0.38 year-1, respectively. As the exploitation rate was estimated as E=0.86, it can be shown that the Salema stock was highly influenced by overfishing.

Keywords: biology, sarpa salpa, Gökceada, meadows

Procedia PDF Downloads 86
3169 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction

Authors: Sol Girouard, Zona Kostic

Abstract:

A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.

Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training

Procedia PDF Downloads 280
3168 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 248
3167 Insecticidal and Repellent Efficacy of Clove and Lemongrass Oils Against Museum Pest, Lepisma Saccharina (Zygentoma: Lepismatidae)

Authors: Suboohi Nasrin, MHD. Shahid, Abduraheem K.

Abstract:

India is a tropical country, and it is estimated that biological and abiological agents are the major factors in the destruction and deterioration of archival materials like herbarium, paper, cellulose, bookbinding, etc. Silverfish, German Cockroaches, Termites, Booklice, Tobacco beetle and Carpet beetles are the common insect's pests in the museum, which causes deterioration to collections of museum specimens. Among them, silverfish is one of the most notorious pests and primarily responsible for the deterioration of Archival materials. So far, the investigation has been carried to overcome this existing problem as different management strategies such as chemical insecticides, fungicides, herbicides, nematicides, etc., have been applied. Moreover, Synthetic molecules lead to affect the ecological balance, have a detrimental effects on human health, reduce the beneficial microbial flora and fauna, etc. With a view, numbers of chemicals have been banned and advised not to be used due to their long-lasting persistency in soil ecosystem, water and carcinogenic. That’s why the authors used natural products with biocidal activity, cost-effective and eco-friendly approaches. In this study, various concentrations (30, 60 and 90 ml/L) of clove and lemongrass essential oil at different treatment duration (30, 60, 90 and 120-minutes) were investigated to test its properties as a silverfish repellent and insecticidal effect. The result of two ways ANOVA revealed that the mortality was significantly influenced by oil concentration, treatment duration and interaction between two independent factors was also found significant. The mortality rate increased with increasing the oil concentration in clove oil, and 100 % mortality was recorded in 0.9 ml at 120-minute. It was also observed that the treatment duration has the highest effect on the mortality rate of silverfish. The clove oil had the greatest effect on the silverfish in comparison to lemongrass. While in the case of percentage, repellency of adult silverfish was oil concentration and treatment duration-dependent, i.e., increase in concentration and treatment duration resulted in higher repellency percentage. The clove oil was found more effective, showing maximum repellency of 80.00% at 0.9ml/cm2 (highest) concentration, and in lemongrass highest repellency was observed at 33.4% at 0.9 ml/cm2 concentration in the treated area.

Keywords: adult silverfish, oils, oil concentration, treatment duration, mortality (%) and repellency

Procedia PDF Downloads 167
3166 Outcome of Emergency Response Team System in In-Hospital Cardiac Arrest

Authors: Jirapat Suriyachaisawat, Ekkit Surakarn

Abstract:

Introduction: To improve early detection and mortality rate of In- Hospital Cardiac arrest, Emergency Response Team (ERT) system was planned and implemented since June 2009 to detect pre-arrest conditions and for any concerns. The ERT consisted of on duty physicians and nurses from emergency department. ERT calling criteria consisted of acute change of HR < 40 or > 130 beats per minute, systolic blood pressure < 90mmHg, respiratory rate <8 or > 28 breaths per minute, O2 saturation < 90%, acute change in conscious state, acute chest pain or worried about the patients. From the data on ERT system implementation in our hospital in early phase (during June 2009-2011), there was no statistic significance in difference in In-Hospital cardiac arrest incidence and overall hospital mortality rate. Since the introduction of the ERT service in our hospital, we have conducted continuous educational campaign to improve awareness in an attempt to increase use of the service. Methods: To investigate outcome of ERT system in In-Hospital cardiac arrest and overall hospital mortality rate. We conducted a prospective, controlled before-and after examination of the long term effect of a ERT system on the incidence of cardiac arrest. We performed Chi -square analysis to find statistic significance. Results: Of a total 623 ERT cases from June 2009 until December 2012, there were 72 calls in 2009, 196 calls in 2010 ,139 calls in 2011 and 245 calls in 2012.The number of ERT calls per 1000 admissions in year 2009-10 was 7.69, 5.61 in 2011 and 9.38 in 2013. The number of Code blue calls per 1000 admissions decreased significantly from 2.28 to 0.99 per 1000 admissions (P value < 0.001). The incidence of cardiac arrest decreased progressively from 1.19 to 0.34 per 1000 admissions and significant in difference in year 2012 (P value < 0.001). The overall hospital mortality rate decreased by 8 % from 15.43 to 14.43 per 1000 admissions (P value 0.095). Conclusions: ERT system implementation was associated with progressive reduction in cardiac arrests over three year period, especially statistic significant in difference in 4th year after implementation. We also found an inverse association between number of ERT use and the risk of occurrence of cardiac arrests, But we have not found difference in overall hospital mortality rate.

Keywords: emergency response team, ERT, cardiac arrest, emergency medicine

Procedia PDF Downloads 314
3165 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 202
3164 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 339
3163 Long-Term Outcome of Emergency Response Team System in In-Hospital Cardiac Arrest

Authors: Jirapat Suriyachaisawat, Ekkit Surakarn

Abstract:

Introduction: To improve early detection and mortality rate of in-hospital cardiac arrest, Emergency Response Team (ERT) system was planned and implemented since June 2009 to detect pre-arrest conditons and for any concerns. The ERT consisted of on duty physicians and nurses from emergency department. ERT calling criteria consisted of acute change of HR < 40 or > 130 beats per minute, systolic blood pressure < 90 mmHg, respiratory rate <8 or >28 breaths per minute, O2 saturation <90%, acute change in conscious state, acute chest pain or worry about the patients. From the data on ERT system implementation in our hospital in early phase (during June 2009-2011), there was no statistic significance in difference in in-hospital cardiac arrest incidence and overall hospital mortality rate. Since the introduction of the ERT service in our hospital, we have conducted continuous educational campaign to improve awareness in an attempt to increase use of the service. Methods: To investigate outcome of ERT system in in-hospital cardiac arrest and overall hospital mortality rate, we conducted a prospective, controlled before-and after examination of the long term effect of a ERT system on the incidence of cardiac arrest. We performed chi-square analysis to find statistic significance. Results: Of a total 623 ERT cases from June 2009 until December 2012, there were 72 calls in 2009, 196 calls in 2010, 139 calls in 2011 and 245 calls in 2012. The number of ERT calls per 1000 admissions in year 2009-10 was 7.69; 5.61 in 2011 and 9.38 in 2013. The number of code blue calls per 1000 admissions decreased significantly from 2.28 to 0.99 per 1000 admissions (P value < 0.001). The incidence of cardiac arrest decreased progressively from 1.19 to 0.34 per 1000 admissions and significant in difference in year 2012 (P value < 0.001 ). The overall hospital mortality rate decreased by 8 % from 15.43 to 14.43 per 1000 admissions (P value 0.095). Conclusions: ERT system implementation was associated with progressive reduction in cardiac arrests over three year period, especially statistic significant in difference in 4th year after implementation. We also found an inverse association between number of ERT use and the risk of occurrence of cardiac arrests, but we have not found difference in overall hospital mortality rate.

Keywords: cardiac arrest, outcome, in-hospital, ERT

Procedia PDF Downloads 201
3162 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 191
3161 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 472
3160 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 148
3159 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 92
3158 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 168
3157 Experience of Hydatid Disease of Liver at a Tertiary Care Center 7 Years Experience

Authors: Jibran Abbasy, Rizwan Sultan, Ammar Humayun, Tabish Chawla

Abstract:

Background: Hydatid disease caused by Echinococcus Granulosus affects liver in 70-90% of cases. Dogs are the definitive host while humans are the accidental host. Modalities used for its treatment are especially important for our population as the disease is endemic in many Asian countries. The aim of the study was to perform an audit of the various modalities used for treatment of hydatid disease of liver and the response to each modality in tertiary care center of Pakistan. Materials and Methods: Retrospective audit of patients diagnosed and treated for Hydatid disease of the liver at Aga Khan University Hospital from 1st January 2007 to 31st December 2014 was completed. All patients aged 16 and above were included. Patients who had extra hepatic disease and missing records were excluded. Outcome measures were morbidity, mortality and recurrence of the disease. Results: During the study period 56 patients were treated for isolated hepatic hydatid disease and were included. Mean age was 39 years with 48% being females and 52% males. Most common presenting complaint was abdominal pain seen in 53% of patients(n=41). Duration of symptoms was less than 6 months in 74% (n=38). Mostly right lobe was involved in 69% (n=38).Most common treatment modality used was surgery in 34 patients followed by PAIR in 14 patients while 8 patients were treated medically. At a median follow up of 34 months recurrence was seen in 2 patients treated with PAIR while no patient treated with surgery had recurrence with the median follow up of 20 months. While no morbidity and mortality were observed in PAIR, but in surgery 5 patients had morbidity while 1 patient had mortality. Conclusion: Our data is comparative to other studies in terms of morbidity, mortality, and recurrence. We had adequate follow up. In our study PAIR and surgery both are effective and have less complications and recurrence rate. Surgery is still the gold standard in terms of recurrence.

Keywords: echinococcous granulosus, puncture aspiration irrigation reaspiration (PAIR), surgery, hydatid disease

Procedia PDF Downloads 268
3156 A Prospective Randomised Observational Study of Obstructed Total Anamalous Pulmonary Venous Connection (TAPVC) Repair Patients

Authors: Sanjeev Singh

Abstract:

Background: Obstructed total anomalous pulmonary venous connection (OTAPVC) typically presents with severe cardiovascular decompensation and requires urgent surgical management. Pulmonary arterial hypertension (PAH) is a major risk factor affecting mortality. Perioperative management focuses on providing inotropic support and managing potential pulmonary hypertensive episodes. The aim of this study was to determine the outcome of patients with high pulmonary arterial pressure (PAP) with milrinone alone and a combination of milrinone and inhaled nitric oxide (INO). Material and Methods: After the approval of the ethical committee, this single-center prospective randomized and observational study was conducted over a period of two years among eighty-six patients with obstructed TAPVC repair with severe PAH. Group-I patients received milrinone, and Group-II patients received both milrinone (after aortic cross-clamp removal) and INO during the post-operative period at the cardiac care unit (CCU). Clinical outcomes such as ventilation time, length of stay (LOS) in the CCU, LOS in the hospital, complications, and hospital mortality were compared between the two groups. Result: The average ventilation time, LOS in CCU, and LOS in hospital for group I were 96.82 ± 19.46 hours, 10.91 ± 7.53 days, and 14.46 ± 7.58 days, respectively, and for group II, it was 85.14 ± 15.79 hours, 7.28 ± 3.68 days, and 10.21 ± 3.14 days, respectively, which was statistically significantly lower for group II. Reintubation, RV dysfunction, and hospital mortality were 16.3%, 37.2%, and 6.9% in group I, and 4.8%, 14.6%, and 2.4% in group II, respectively. The P value for each variable was significant < 0.05 (except mortality). Conclusion: Preoperative obstruction is a risk factor for postoperative obstruction, as 235 patients with obstructed TAPVC had severe PAH (39.98%) in this study. Management of severe PAH with a combination of milrinone and INO had a better outcome than milrinone alone.

Keywords: inhaled nitric oxide, milrinone, pulmonary artery hypertension, total anomalous pulmonary venous connection

Procedia PDF Downloads 45
3155 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 360
3154 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 235
3153 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 119
3152 Fracture and Fatigue Crack Growth Analysis and Modeling

Authors: Volkmar Nolting

Abstract:

Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.

Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring

Procedia PDF Downloads 58
3151 Impact of Emergency Medicine Department Crowding on Mortality

Authors: Morteza Gharibi, Abdolghader Pakniat, Somayeh Bahrampouri

Abstract:

Introduction: Emergency department (E.R.) crowding is a serious widespread problem in hospitals that leads to irregularities, a slower rate of delivery of services to patients, and a long-term stay. In addition, the long-term stay in the E.D. reduces the possibility of providing services with appropriate quality to other patients who are undergoing medical emergencies, which leads to dissatisfaction among patients. This study aimed to determine the relationship between ED-crowding and the mortality rate of the patients referred to the E.D. In a retrospective cohort study, all patients who expired in first 24 hours of admission were enrolled in the study. Crowding index at the moment of admission was calculated using Edwin Score. The data including history and physical examination, time of arrival in the E.D., diagnosis (using ICD 10 code), time of death, cause of death, demographic information was recoded based on triage forms on admission and patients’ medical files. Data analysis was performed by using descriptive statistics and chi square test, ANOVA tests using SPSS ver. 19. The time of arrival in E.D. to death in crowded E.D. conditions, with an average of five hours and 25 minutes, was significantly higher than the average admission Time of arrival in E.D. to death in active and crowded E.D. conditions. More physicians and nurses can be employed during crowded times to reduce staff fatigue and improve their performance during these hours.

Keywords: mortality, emergency, department, crowding

Procedia PDF Downloads 99
3150 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 146