Search results for: local cluster detection
9094 Cognitive Methods for Detecting Deception During the Criminal Investigation Process
Authors: Laid Fekih
Abstract:
Background: It is difficult to detect lying, deception, and misrepresentation just by looking at verbal or non-verbal expression during the criminal investigation process, as there is a common belief that it is possible to tell whether a person is lying or telling the truth just by looking at the way they act or behave. The process of detecting lies and deception during the criminal investigation process needs more studies and research to overcome the difficulties facing the investigators. Method: The present study aimed to identify the effectiveness of cognitive methods and techniques in detecting deception during the criminal investigation. It adopted the quasi-experimental method and covered a sample of (20) defendants distributed randomly into two homogeneous groups, an experimental group of (10) defendants be subject to criminal investigation by applying cognitive techniques to detect deception and a second experimental group of (10) defendants be subject to the direct investigation method. The tool that used is a guided interview based on models of investigative questions according to the cognitive deception detection approach, which consists of three techniques of Vrij: imposing the cognitive burden, encouragement to provide more information, and ask unexpected questions, and the Direct Investigation Method. Results: Results revealed a significant difference between the two groups in term of lie detection accuracy in favour of defendants be subject to criminal investigation by applying cognitive techniques, the cognitive deception detection approach produced superior total accuracy rates both with human observers and through an analysis of objective criteria. The cognitive deception detection approach produced superior accuracy results in truth detection: 71%, deception detection: 70% compared to a direct investigation method truth detection: 52%; deception detection: 49%. Conclusion: The study recommended if practitioners use a cognitive deception detection technique, they will correctly classify more individuals than when they use a direct investigation method.Keywords: the cognitive lie detection approach, deception, criminal investigation, mental health
Procedia PDF Downloads 669093 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management
Authors: Jung-Hoon Han, Jooyoung Kwak
Abstract:
Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management
Procedia PDF Downloads 4889092 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8
Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti
Abstract:
In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports
Procedia PDF Downloads 799091 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 739090 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks
Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan
Abstract:
The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks
Procedia PDF Downloads 5059089 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX
Procedia PDF Downloads 5009088 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee
Abstract:
Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance
Procedia PDF Downloads 859087 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases
Authors: Mahdi Rahaie
Abstract:
MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases
Procedia PDF Downloads 1519086 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2289085 The Use of Telecare in the Re-design of Overnight Supports for People with Learning Disabilities: Implementing a Cluster-based Approach in North Ayrshire
Authors: Carly Nesvat, Dominic Jarrett, Colin Thomson, Wilma Coltart, Thelma Bowers, Jan Thomson
Abstract:
Introduction: Within Scotland, the Same As You strategy committed to moving people with learning disabilities out of long-stay hospital accommodation into homes in the community. Much of the focus of this movement was on the placement of people within individual homes. In order to achieve this, potentially excessive supports were put in place which created dependence, and carried significant ongoing cost primarily for local authorities. The greater focus on empowerment and community participation which has been evident in more recent learning disability strategy, along with the financial pressures being experienced across the public sector, created an imperative to re-examine that provision, particularly in relation to the use of expensive sleepover supports to individuals, and the potential for this to be appropriately scaled back through the use of telecare. Method: As part of a broader programme of redesigning overnight supports within North Ayrshire, a cluster of individuals living in close proximity were identified, who were in receipt of overnight supports, but who were identified as having the capacity to potentially benefit from their removal. In their place, a responder service was established (an individual staying overnight in a nearby service user’s home), and a variety of telecare solutions were placed within individual’s homes. Active and passive technology was connected to an Alarm Receiving Centre, which would alert the local responder service when necessary. Individuals and their families were prepared for the change, and continued to be informed about progress with the pilot. Results: 4 individuals, 2 of whom shared a tenancy, had their sleepover supports removed as part of the pilot. Extensive data collection in relation to alarm activation was combined with feedback from the 4 individuals, their families, and staff involved in their support. Varying perspectives emerged within the feedback. 3 of the individuals were clearly described as benefitting from the change, and the greater sense of independence it brought, while more concerns were evident in relation to the fourth. Some family members expressed a need for greater preparation in relation to the change and ongoing information provision. Some support staff also expressed a need for more information, to help them understand the new support arrangements for an individual, as well as noting concerns in relation to the outcomes for one participant. Conclusion: Developing a telecare response in relation to a cluster of individuals was facilitated by them all being supported by the same care provider. The number of similar clusters of individuals being identified within North Ayrshire is limited. Developing other solutions such as a response service for redesign will potentially require greater collaboration between different providers of home support, as well as continuing to explore the full range of telecare, including digital options. The pilot has highlighted the need for effective preparatory and ongoing engagement with staff and families, as well as the challenges which can accompany making changes to long-standing packages of support.Keywords: challenges, change, engagement, telecare
Procedia PDF Downloads 1779084 The Practices of Citizen Participation and Political Accountability in Malaysia Local Government
Authors: Halimah Abdul Manaf, Ahmad Martadha Mohamed, Zainal M. Zan, Nur Rusydina Khadzali
Abstract:
Strengthening accountability among civil servants has been at the centre of government transformation ever since the country is striving to become a developed nation by the year 2020. One critical area that has become the loci of attention is increasing the accountability of local government by delivering services that are preferred by the communities. This article explores the practices of citizen participation and political accountability in local government in Malaysia. The existing literature has identified a mismatch between the demands of the community and the actual services delivered by the local government. Based upon this framework, this research attempts to examine the linkages between citizen participation and political accountability in selected local governments in Malaysia. This study employs quantitative method involving 1155 respondents who were randomly selected from local government personnel as well as local citizens. The instruments in the questionnaires were adopted from Wang and Wart (2007) who have also studied local government accountability. The findings reveal that respondents are satisfied with the services provided to the community. However, three areas of concerned are the inadequacy of citizens’ participation in programs, immediate actions on complaints as well as the slow response to repair dilapidated basic infrastructures such as roads, park, and recreations. It is recommended that local governments in Malaysia continue to engage the citizens in the decision making process so that the needs and demands of the citizens can be adequately fulfilled.Keywords: citizen participation, political accountability, local government, Malaysia
Procedia PDF Downloads 2139083 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 2379082 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.Keywords: automatic detection, tracking, pedestrians, counting
Procedia PDF Downloads 2579081 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation
Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun
Abstract:
This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation
Procedia PDF Downloads 4519080 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee
Abstract:
Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.Keywords: fractal, tumor, thermography, mammography
Procedia PDF Downloads 3889079 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders
Authors: Gregory Sullivan
Abstract:
The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders
Procedia PDF Downloads 709078 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 539077 A Study of Thai Tourists' Image towards Local Food in Phetchaburi, Thailand in Order to Promote Food Tourism
Authors: Pimrawee Rocharungsat
Abstract:
The study of Phetchaburi Local Food Image in order to Support Tourism aimed 1) to overview Phetchaburi tourism images; and 2) to clarify Phetchaburi local food image. Both quantitative and qualitative analysis were used in this study. Questionnaires were delivered to sample group of 1,489 tourists from 8 districts of Phetchaburi. Results were found that Phetchaburi local food image could be as tool for tourism promotion. Strong place images were within Phetchaburi center city (35%) and in the markets (34.50%). As for satisfaction of local food comparing in descending order of excellent level mean score were its eminence, identity, quality, taste, creativity, and sanitation. Results of prominent images of well-known local food of Phetchaburi were Thai custard dessert, other desserts, palm and sugar palm drink and rice in ice water. The results can be applied as promotional tools for future food tourism in Phetchaburi.Keywords: food tourism, image, tourist, Phetchaburi province
Procedia PDF Downloads 2099076 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings
Authors: Gaelle Candel, David Naccache
Abstract:
t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning
Procedia PDF Downloads 1439075 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It
Authors: Mohammad Rahim Rahnama, Lia Shaddel
Abstract:
Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index
Procedia PDF Downloads 1329074 A Study on Local Wisdom towards Career Building of People in Kamchanoad Community
Authors: Phusit Phukamchanoad, Thananya Santithammakul, Suwaree Yordchim, Pennapa Palapin
Abstract:
This research gathered local wisdom towards career building of people in Kamchanoad Community, Baan Muang sub-district, Baan Dung district, Udon Thani province. Data was collected through in-depth interviews with village headmen, community board, teachers, monks, Kamchanoad forest managers and revered elderly aged over 60 years old. All of these 30 interviewees have resided in Kamchanoad Community for more than 40. Descriptive data analysis result revealed that the most prominent local wisdom of Kamchanoad community is their beliefs and religion. Most people in the community have strongly maintained local tradition, the festival of appeasing Chao Pu Sri Suttho on the middle of the 6th month of Thai lunar calendar which falls on the same day with Vesak Day. 100 percent of the people in this community are Buddhist. They believe that Naga, an entity or being, taking the form of a serpent, named “Sri Suttho” lives in Kamchanoad forest. The local people worship the serpent and ask for blessings. Another local wisdom of this community is Sinh fabric weaving.Keywords: local wisdoms, careers, Kamchanoad Community, career building
Procedia PDF Downloads 3149073 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 2329072 E-Commercial Enterprises' Behavior on China's Local Government's Economic Policy: An Example from Zhejiang Province
Authors: Chia-Chi Cheng
Abstract:
After the implementation of “the internet plus,” several puzzles emerge as below: why does China impose more regulation and laws on economic development on the Internet? Why does China urge the importance of manufacturing industry? Why does China’s local government passively implement the policy imposed by the central government? What kind of factors can influence China’s local government’s economic preference? In the framework of neo-institutionalism, this research considers China’s local government as changing agents to analyze its preferences and behavior. In general, the interests urged by the local government will decide its preference and behaviors. They will change its counterpart to cooperate if the change will bring more benefits. Thus, they will change its preference and behavior while the external environment alters. While the local government has the same definition on political activity and economic interest, they will prefer to cooperate with the local enterprises in the way of laying symbiont, within the presumption that the institution remains. While the local government has the different positions on political activity and economic interest, they will re-define the existed regulation or create new regulation in the condition of institution vacuum. Sequentially, they will replace the targets, and the policy, which does not fit in the Central government’s policy, will emerge.Keywords: China, institutional change, government enterprise relationship, e-commercial policy
Procedia PDF Downloads 2379071 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic
Authors: Mubarak Alhajri
Abstract:
This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.Keywords: adaptive control, convergence, hysteresis constant, hysteresis switching
Procedia PDF Downloads 3939070 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure
Procedia PDF Downloads 4239069 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality
Procedia PDF Downloads 4639068 Binarization and Recognition of Characters from Historical Degraded Documents
Authors: Bency Jacob, S.B. Waykar
Abstract:
Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.Keywords: binarization, denoising, global thresholding, local thresholding, thresholding
Procedia PDF Downloads 3449067 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1449066 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier
Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat
Abstract:
Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier
Procedia PDF Downloads 3529065 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 109