Search results for: intuitionistic fuzzy set
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: intuitionistic fuzzy set

380 Investment Projects Selection Problem under Hesitant Fuzzy Environment

Authors: Irina Khutsishvili

Abstract:

In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Procedia PDF Downloads 118
379 Two Stage Fuzzy Methodology to Evaluate the Credit Risks of Investment Projects

Authors: O. Badagadze, G. Sirbiladze, I. Khutsishvili

Abstract:

The work proposes a decision support methodology for the credit risk minimization in selection of investment projects. The methodology provides two stages of projects’ evaluation. Preliminary selection of projects with minor credit risks is made using the Expertons Method. The second stage makes ranking of chosen projects using the Possibilistic Discrimination Analysis Method. The latter is a new modification of a well-known Method of Fuzzy Discrimination Analysis.

Keywords: expert valuations, expertons, investment project risks, positive and negative discriminations, possibility distribution

Procedia PDF Downloads 676
378 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter

Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef

Abstract:

This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.

Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter

Procedia PDF Downloads 179
377 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites

Authors: Murat Gunduz, Mustafa Ozdemir

Abstract:

In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.

Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites

Procedia PDF Downloads 522
376 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 466
375 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development

Authors: Wann-Ming Wey

Abstract:

In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.

Keywords: green TOD, built environment, fuzzy delphi technique, quality function deployment, fuzzy analytic network process

Procedia PDF Downloads 384
374 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection

Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic

Abstract:

In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.

Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection

Procedia PDF Downloads 137
373 Imperfect Production Inventory Model with Inspection Errors and Fuzzy Demand and Deterioration Rates

Authors: Chayanika Rout, Debjani Chakraborty, Adrijit Goswami

Abstract:

Our work presents an inventory model which illustrates imperfect production and imperfect inspection processes for deteriorating items. A cost-minimizing model is studied considering two types of inspection errors, namely, Type I error of falsely screening out a proportion of non-defects, thereby passing them on for rework and Type II error of falsely not screening out a proportion of defects, thus selling those to customers which incurs a penalty cost. The screened items are reworked; however, no returns are entertained due to deteriorating nature of the items. In more practical situations, certain parameters such as the demand rate and the deterioration rate of inventory cannot be accurately determined, and therefore, they are assumed to be triangular fuzzy numbers in our model. We calculate the optimal lot size that must be produced in order to minimize the total inventory cost for both the crisp and the fuzzy models. A numerical example is also considered to exemplify the procedure which is followed by the analysis of sensitivity of various parameters on the decision variable and the objective function.

Keywords: deteriorating items, EPQ, imperfect quality, rework, type I and type II inspection errors

Procedia PDF Downloads 182
372 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 452
371 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 101
370 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 125
369 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 397
368 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 81
367 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.

Keywords: data mining, k-means, MCOKE, overlapping

Procedia PDF Downloads 575
366 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates

Authors: Takashi Mitsuishi

Abstract:

Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).

Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation

Procedia PDF Downloads 364
365 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case

Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios

Abstract:

The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.

Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system

Procedia PDF Downloads 379
364 Evaluation of the Enablers of Industry 4.0 in the Ready-Made Garments Sector of Bangladesh: A Fuzzy Analytical Hierarchy Process Approach

Authors: Shihab-Uz-Zaman Shah, Sanjeeb Roy, Habiba Akter

Abstract:

Keeping the high impact of the Ready-Made Garments (RMG) on the country’s economic growth in mind, this research paves a way for the implementation of Industry 4.0 in the garments industry of Bangladesh. At present, Industry 4.0 is a common buzzword representing the adoption of digital technologies in the production process to transform the existing industries into smart factories and create a great change in the global value chain. The RMG industry is the largest industrial sector of Bangladesh which provides 12.26% to its National GDP (Gross Domestic Product). The work starts with identifying possible enablers of Industry 4.0. To evaluate the enablers, a Multiple-Criteria Decision-Making (MCDM) procedure named Fuzzy Analytical Hierarchy Process (FAHP) was used. A questionnaire was developed as a part of a survey for collecting and analyzing expert opinions from relevant academicians and industrialists. The responses were eventually used as the input for the FAHP which helped to assign weight matrices to the enablers. This weight matrix indicated the level of importance of these enablers. The full paper will discuss the way of a successful evaluation of the enablers and implementation of Industry 4.0 by using these enablers.

Keywords: enablers, fuzzy AHP, industry 4.0, RMG sector

Procedia PDF Downloads 161
363 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 279
362 Downtime Estimation of Building Structures Using Fuzzy Logic

Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam

Abstract:

Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.

Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment

Procedia PDF Downloads 160
361 Applying Fuzzy Analytic Hierarchy Process for Subcontractor Selection

Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi

Abstract:

Textile and clothing manufacturing industry is based largely on subcontracting system. Choosing the right subcontractor became a strategic decision that can affect the financial position of the company and even his market position. Subcontracting firms in Tunisia are lead to define an appropriate selection process which takes into account several quantitative and qualitative criteria. In this study, a methodology is proposed that includes a Fuzzy Analytic Hierarchy Process (AHP) in order to incorporate the ambiguities and uncertainties in qualitative decision. Best subcontractors for two Tunisian firms are determined based on model results.

Keywords: AHP, subcontractor, multicriteria, selection

Procedia PDF Downloads 689
360 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process

Authors: Pathinathan Theresanathan, Ajay Minj

Abstract:

Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.

Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR

Procedia PDF Downloads 260
359 Developing Fire Risk Factors for Existing Small-Scale Hospitals

Authors: C. L. Wu, W. W. Tseng

Abstract:

From the National Health Insurance (NHI) system was introduced in Taiwan in 2000, there have been some problems in transformed small-scale hospitals, such as mobility of patients, shortage of nursing staff, medical pipelines breaking fire compartments and insufficient fire protection systems. Due to shrinking of the funding scale and the aging society, fire safety in small-scale hospitals has recently given cause for concern. The aim of this study is to determine fire risk index for small-scale hospital through a systematic approach The selection of fire safety mitigation methods can be regarded as a multi-attribute decision making process which must be guaranteed by expert groups. First of all, identify and select safety related factors and identify evaluation criteria through literature reviews and experts group. Secondly, application of the Fuzzy Analytic Hierarchy Process method is used to ascertain a weighted value which enables rating of the importance each of the selected factors. Overall, Sprinkler type and Compartmentation are the most crucial indices in mitigating fire, that is to say, structural approach play an important role to decrease losses in fire events.

Keywords: Fuzzy Delphi Method, fuzzy analytic hierarchy, process risk assessment, fire events

Procedia PDF Downloads 447
358 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 177
357 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting

Procedia PDF Downloads 328
356 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, A. Elazim Negm

Abstract:

Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models

Procedia PDF Downloads 476
355 A Framework for Rating Synchronous Video E-Learning Applications

Authors: Alex Vakaloudis, Juan Manuel Escano-Gonzalez

Abstract:

Setting up a system to broadcast live lectures on the web is a procedure which on the surface does not require any serious technical skills mainly due to the facilities provided by popular learning management systems and their plugins. Nevertheless, producing a system of outstanding quality is a multidisciplinary and by no means a straightforward task. This complicatedness may be responsible for the delivery of an overall poor experience to the learners, and it calls for a formal rating framework that takes into account the diverse aspects of an architecture for synchronous video e-learning systems. We discuss the specifications of such a framework which at its final stage employs fuzzy logic technique to transform from qualitative to quantitative results.

Keywords: synchronous video, fuzzy logic, rating framework, e-learning

Procedia PDF Downloads 560
354 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil

Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha

Abstract:

This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.

Keywords: behavior of winds, wind power, fuzzy logic, sustainable development

Procedia PDF Downloads 293
353 Risk Assessment on Construction Management with “Fuzzy Logy“

Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi

Abstract:

Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.

Keywords: fuzzy logy, risk, prioritization, assessment

Procedia PDF Downloads 594
352 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 298
351 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling

Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy

Procedia PDF Downloads 496