Search results for: four-point bending
258 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core
Authors: Elif Kalkanli, Constantinos Soutis
Abstract:
The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel
Procedia PDF Downloads 206257 Interaction of Histone H1 with Chromatin-associated Protein HMGB1 Studied by Microscale Thermophoresis
Authors: Michal Štros, Eva Polanská, Šárka Pospíšilová
Abstract:
HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. MALDI-TOF analysis revealed that mild oxidization of HMGB1 resulted in a conformational change of the protein due to formation of an intramolecular disulphide bond by opposing Cys23 and Cys45 residues. We have demonstrated that redox state of HMGB1 could significantly modulate the ability of the protein to bind and bend DNA. We have also shown that reduced HMGB1 could easily displace histone H1 from DNA, while oxidized HMGB1 had limited capacity for H1 displacement. Using microscale thermophoresis (MST) we have further studied mechanism of HMGB1 interaction with histone H1 in free solution or when histone H1 was bound to DNA. Our MST analysis indicated that reduced HMGB1 exhibited in free solution > 1000 higher affinity of for H1 (KD ~ 4.5 nM) than oxidized HMGB1 (KD <10 M). Finally, we present a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA.Keywords: HMGB1, histone H1, redox state, interaction, cross-linking, DNA bending, DNA end-joining, microscale thermophoresis
Procedia PDF Downloads 336256 Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles
Authors: H. K. Sachidananda, K. Raghunandana, B. Shivamurthy
Abstract:
The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°.Keywords: altered tooth-sum gearing, bending fatigue, mesh stiffness, spur gear
Procedia PDF Downloads 325255 Bond Strength of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed Sarhan Sarhan
Abstract:
This paper presents an experimental study of the bond behaviour of confined concrete beams reinforced with a chequer steel plate or a deformed steel bar by using the beam-bending pullout test. A total of three beams of 225 mm width, 300 mm height, and 600 mm length were cast and tested. All the beams had the same details of compression reinforcement and stirrups; two plain steel bars of 10 mm diameter (R10) were used for the compression reinforcement, and plain steel bars (R10) at a distance of 80 mm centre to centre were used for the stirrups. The first beam was reinforced with a deformed steel bar while the remaining beams were reinforced with horizontal or vertical chequer steel plates. The results showed no significant difference in the bond force between the beams reinforced with a deformed steel bar or a horizontal steel plate. The beam reinforced with a vertical steel plate considerably presented a bond force higher than the beam reinforced with a horizontal steel plate.Keywords: bond, pullout, reinforced concrete, steel plate
Procedia PDF Downloads 131254 Design and Analysis of a Laminated Composite Automotive Drive Shaft
Authors: Hossein Kh. Bisheh, Nan Wu
Abstract:
Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling
Procedia PDF Downloads 233253 Crack Width Evaluation for Flexural RC Members with Axial Tension
Authors: Sukrit Ghorai
Abstract:
Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials.Keywords: concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering
Procedia PDF Downloads 383252 Research on Straightening Process Model Based on Iteration and Self-Learning
Authors: Hong Lu, Xiong Xiao
Abstract:
Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.Keywords: straightness, straightening stroke, deflection, shaft parts
Procedia PDF Downloads 329251 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns
Abstract:
Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.Keywords: lateral-torsional buckling, stability, beam-column, monosymmetric section
Procedia PDF Downloads 325250 Durability of Wood Shavel Composites with Environmental Friendly Based Binder
Authors: Jul Endawati
Abstract:
The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.Keywords: durability, fly ash, natural fibre, silica fume
Procedia PDF Downloads 262249 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.Keywords: concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC
Procedia PDF Downloads 281248 Uses and Manufacturing of Beech Corrugated Plywood
Authors: Prochazka Jiri, Beranek Tomas, Podlena Milan, Zeidler Ales
Abstract:
The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications.Keywords: corrugated plywood, veneer, beech plywood, ISO shipping container, I-joist
Procedia PDF Downloads 338247 A Review of Masonry Buildings Restrengthening Methods
Authors: Negar Sartipzadeh
Abstract:
The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake
Procedia PDF Downloads 281246 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test
Procedia PDF Downloads 420245 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response
Procedia PDF Downloads 321244 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed S. Sarhan
Abstract:
This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.Keywords: concrete beam, deflection, ductility, plate
Procedia PDF Downloads 160243 Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving
Authors: Khaled M.Naguib, Ahmed M.Noureldin
Abstract:
This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use.Keywords: cement, tiles, water treatment sludge, breaking strength, absorption, heavy metals, risk analysis
Procedia PDF Downloads 110242 Optimization of Bio-Based Lightweight Mortars Containing Wood Waste
Authors: Valeria Corinaldesi, Nicola Generosi, Daniele Berdini
Abstract:
In this study, wood waste from processing by-products was used by replacing natural sand for producing bio-based lightweight mortars. Manufacturers of wood products and furniture usually generate sawdust and pieces of side-cuts. These are produced by cutting, drilling, and milling operations as well. Three different percentages of substitution of quartz sand were tried: 2.5%, 5%, and 10% by volume. Wood by-products were pre-soaked in calcium hydroxide aqueous solution in order to obtain wood mineralization to avoid undesirable effects on the bio-based building materials. Bio-based mortars were characterized by means of compression and bending tests, free drying shrinkage tests, resistance to water vapour permeability, water capillary absorption, and, finally, thermal conductivity measurements. Results obtained showed that a maximum dosage of 5% wood by-products should be used in order to avoid an excessive loss of bio-based mortar mechanical strength. On the other hand, by adding the proper dosage of water-reducing admixture, adequate mechanical performance can be achieved even with 10% wood waste addition.Keywords: bio-based mortar, energy efficiency, lightweight mortar, thermal insulation, wood waste
Procedia PDF Downloads 11241 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads
Authors: Ganga K. V. Prakhya, V. Karthigeyan
Abstract:
The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.Keywords: concrete, explosion, fluid structure interaction, offshore structures
Procedia PDF Downloads 188240 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections
Authors: Manuel E. Soto-López, Israel Gaxiola-Avendaño, Alfredo Reyes-Salazar, Eden Bojórquez, Sonia E. Ruiz
Abstract:
The seismic responses of steel buildings with semi-rigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to this results, steel buildings with PC are a viable option in highseismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.Keywords: inter-story drift, nonlinear time-history analysis, post-tensioned connections, steel buildings
Procedia PDF Downloads 500239 A Full-Scale Test of Coping-Girder Integrated Bridge
Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An
Abstract:
Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.Keywords: coping, crack, integrated bridge, full-scale test
Procedia PDF Downloads 441238 Material Characterization of Medical Grade Woven Bio-Fabric for Use in ABAQUS *FABRIC Material Model
Authors: Lewis Wallace, William Dempster, David Nash, Alexandros Boukis, Craig Maclean
Abstract:
This paper, through traditional test methods and close adherence to international standards, presents a characterization study of a woven Polyethylene Terephthalate (PET). Testing is undergone in the axial, shear, and out-of-plane (bend) directions, and the results are fitted to the *FABRIC material model with ABAQUS FEA. The non-linear behaviors of the fabric in the axial and shear directions and behaviors on the macro scale are explored at the meso scale level. The medical grade bio-fabric is tested in untreated and heat-treated forms, and deviations are closely analyzed at the micro, meso, and macro scales to determine the effects of the process. The heat-treatment process was found to increase the stiffness of the fabric during axial and bending stiffness testing but had a negligible effect on the shear response. The ability of *FABRIC to capture behaviors unique to fabric deformation is discussed, whereby the unique phenomenological input can accurately represent the experimentally derived inputs.Keywords: experimental techniques, FEA modelling, materials characterization, post-processing techniques
Procedia PDF Downloads 95237 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory
Procedia PDF Downloads 459236 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors
Authors: Hadjoui Abdelhamid, Saimi Ahmed
Abstract:
The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM
Procedia PDF Downloads 233235 Effectiveness of Column Geometry in High-Rise Buildings
Authors: Man Singh Meena
Abstract:
Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column.Keywords: high-rise building, column geometry, building modelling, ETABS analysis, building design, structural analysis, structural optimization
Procedia PDF Downloads 81234 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.Keywords: non-linear vibrations, annular plates, large amplitudes, functionally graded material
Procedia PDF Downloads 364233 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section
Procedia PDF Downloads 297232 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects
Authors: Tugrul Tulunay, Iyas Devran Celik
Abstract:
When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling
Procedia PDF Downloads 167231 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries
Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova
Abstract:
Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling
Procedia PDF Downloads 276230 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests
Authors: V. Fuis, P. Janicek, T. Navrat
Abstract:
The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalized ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of 1 max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bio ceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.Keywords: ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis
Procedia PDF Downloads 421229 Bridges Seismic Isolation Using CNT Reinforced Polymer Bearings
Authors: Mohamed Attia, Vissarion Papadopoulos
Abstract:
There is no doubt that there is a continuous deterioration of structures as a result of multiple hazards which can be divided into natural hazards (e.g., earthquakes, floods, winds) and other hazards due to human behavior (e.g., ship collisions, excessive traffic, terrorist attacks). There have been numerous attempts to address the catastrophic consequences of these hazards and traditional solutions through structural design and safety factors within the design codes, but there has not been much research addressing solutions through the use of new materials that have high performance and can be more effective than usual materials such as reinforced concrete and steel. To illustrate the effect of one of the new high-performance materials, carbon nanotube-reinforced polymer (CNT/polymer) bearings with different weight fractions were simulated as structural components of seismic isolation using ABAQUS in the connection between a bridge superstructure and the substructure. The results of the analyzes showed a significant increase in the time period of the bridge and a clear decrease in the bending moment at the base of the bridge piers at each time step of the time-history analysis in the case of using CNT/polymer bearings compared to the case of direct contact between the superstructure of the bridge and the substructure.Keywords: seismic isolation, bridges damage, earthquake hazard, earthquake resistant structures
Procedia PDF Downloads 196