Search results for: fault tolerant
440 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros
Authors: Rezvan Khavari
Abstract:
The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.Keywords: DEM, chamshir dam, zohreh river, satellite images
Procedia PDF Downloads 482439 Investigation of the Litho-Structure of Ilesa Using High Resolution Aeromagnetic Data
Authors: Oladejo Olagoke Peter, Adagunodo T. A., Ogunkoya C. O.
Abstract:
The research investigated the arrangement of some geological features under Ilesa employing aeromagnetic data. The obtained data was subjected to various data filtering and processing techniques, which are Total Horizontal Derivative (THD), Depth Continuation and Analytical Signal Amplitude using Geosoft Oasis Montaj 6.4.2 software. The Reduced to the Equator –Total Magnetic Intensity (TRE-TMI) outcomes reveal significant magnetic anomalies, with high magnitude (55.1 to 155 nT) predominantly at the Northwest half of the area. Intermediate magnetic susceptibility, ranging between 6.0 to 55.1 nT, dominates the eastern part, separated by depressions and uplifts. The southern part of the area exhibits a magnetic field of low intensity, ranging from -76.6 to 6.0 nT. The lineaments exhibit varying lengths ranging from 2.5 and 16.0 km. Analyzing the Rose Diagram and the analytical signal amplitude indicates structural styles mainly of E-W and NE-SW orientations, particularly evident in the western, SW and NE regions with an amplitude of 0.0318nT/m. The identified faults in the area demonstrate orientations of NNW-SSE, NNE-SSW and WNW-ESE, situated at depths ranging from 500 to 750 m. Considering the divergence magnetic susceptibility, structural style or orientation of the lineaments, identified fault and their depth, these lithological features could serve as a valuable foundation for assessing ground motion, particularly in the presence of sufficient seismic energy.Keywords: lineament, aeromagnetic, anomaly, fault, magnetic
Procedia PDF Downloads 75438 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress
Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim
Abstract:
A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.Keywords: cowpea, genetic variability, quantitative traits, water stress
Procedia PDF Downloads 157437 Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia
Authors: Adhitya Mangala, Yobel
Abstract:
Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area.Keywords: Bittuang geothermal prospect area, Hg anomalies, soil temperature, upflow and outflow zone
Procedia PDF Downloads 325436 Halotolerant Phosphates Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Efficiency in Potassium, Zinc Solubilization, and Promoting Wheat (Triticum Durum 'karim') Germination
Authors: F. Z. Aliyat, M. El Guilli, L. Nassiri, J. Ibijbijen
Abstract:
Climate change is becoming a crucial factor that can significantly impact all ecosystems. It has a negative impact on the environment in many parts of the planet. Agriculture is the main sector affected by climate change. Particularly, the salinity of agricultural soils is among the problems caused by climate change. The use of phosphate solubilizing bacteria (PSB) as a biofertilizer requires previous research on their tolerance to abiotic stress, specifically saline stress tolerance, before the formation of biofertilizers. In this context, the main goal of this research was to assess the salinity tolerance of four strains: Serratia rubidaea strain JCM1240, Enterobacter bugandensis strain 247BMC, Pantoea agglomerans strain ATCC 27155, Pseudomonas brassicacearum subsp. Neoaurantiaca strain CIP109457, which was isolated from solid phosphate sludge. Additionally, their capacity to solubilize potassium and zinc, as well as their effect on Wheat (Triticum Durum 'Karim') germination. The four PSB strains were tested for their ability to solubilize phosphate in NBRIP medium with tricalcium phosphate (TCP) as the sole source of phosphorus under salt stress. Five concentrations of NaCl were used (0%, 0.5%, 1%, 2.5%, 5%). Their phosphate solubilizing activity was estimated by the vanadate-molybdate method. The potassium and zinc solubilization has been tested qualitatively and separately on solid media with mica and zinc oxide as the only sources of potassium and zinc, respectively. The result showed that the solubilization decreases with the increase in the concentration of NaCl; all the strains solubilize the TCP even with 5% NaCl, with a significant difference among the four strains. The Serratia rubidaea strain was the most tolerant strain. In addition, the four strains solubilize the potassium and the zinc. The Serratia rubidaea strain was the most efficient. Therefore, biofertilization with PSB salt-tolerant strains could be a climate-change-preparedness strategy for agriculture in salt soil.Keywords: bioavailability of mineral nutrients, phosphate solid sludge; phosphate solubilization, potassium solubilization, salt stress, zinc solubilization.
Procedia PDF Downloads 85435 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium
Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool
Abstract:
Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.Keywords: wastewater, staphylococcus, chromium, bioremediation
Procedia PDF Downloads 169434 The Impact of Distributed Epistemologies on Software Engineering
Authors: Thomas Smith
Abstract:
Many hackers worldwide would agree that, had it not been for linear-time theory, the refinement of Byzantine fault tolerance might never have occurred. After years of significant research into extreme programming, we validate the refinement of simulated annealing. Maw, our new framework for unstable theory, is the solution to all of these issues.Keywords: distributed, software engineering, DNS, DHCP
Procedia PDF Downloads 355433 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran
Authors: M. Ahmadi, M. Kafil, H. Ebrahimi
Abstract:
Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform
Procedia PDF Downloads 149432 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils
Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman
Abstract:
Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.Keywords: quinoa, salinity, halophyte, genotype
Procedia PDF Downloads 570431 Indoor Radon Concentrations in the High Levels of Uranium Deposit of Phanom and Ko Pha-Ngan Districts, Surat Thani Province, Thailand
Authors: Kanokkan Titipornpun, Somphorn Sriarpanon, Apinun Titipornpun, Jan Gimsa, Tripob Bhongsuwan, Noodchanath Kongchouy
Abstract:
The Phanom and Ko Pha-ngan districts of Surat Thani province are known for their high atmospheric radon concentrations from different sources. While Phanom district is located in an active fault zone, the main radon source in Ko Pha-ngan district is the high amounts of equivalent uranium in the ground surface. Survey measurements of the indoor radon concentrations have been carried out in 105 dwellings and 93 workplaces, using CR-39 detectors that were exposed to indoor radon for forty days. Alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor radon concentrations in the two districts were found to vary between 9 and 63 Bq m-3 (Phanom) and 12 and 645 Bq m-3 (Ko Pha-ngan). The geometric mean radon concentration in Ko Pha-ngan district (51±2 Bq m-3) was significantly higher than in the Phanom district (26±1 Bq m-3) at a significance level of p<0.05 (t-test for independent samples). Nevertheless, only in two dwellings (1%), located in Ko Pha-ngan district, radon concentrations (177 and 645 Bq m-3) were found to exceed the limit recommended by the US EPA of 148 Bq m-3. The two houses are probably located near to radon sources which, in combination with low air convection, led to increased indoor levels of radon. Our study also shows that the geometric mean radon concentration was higher in workplaces than in dwellings (0.05 significance level) in both districts.Keywords: indoor radon, CR-39 detector, active fault zone, equivalent uranium
Procedia PDF Downloads 301430 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)
Authors: Aymen Arfaoui, Abdelkader Soumaya
Abstract:
The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella
Procedia PDF Downloads 70429 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid
Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov
Abstract:
Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics
Procedia PDF Downloads 80428 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults
Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer
Abstract:
Safety and security of autonomous vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, the paper proposes fault-tolerance by diversity model takes into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.Keywords: autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security
Procedia PDF Downloads 128427 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 476426 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui
Abstract:
The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion
Procedia PDF Downloads 122425 A Highly Efficient Broadcast Algorithm for Computer Networks
Authors: Ganesh Nandakumaran, Mehmet Karaata
Abstract:
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms
Procedia PDF Downloads 504424 Determination of Surface Deformations with Global Navigation Satellite System Time Series
Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak
Abstract:
The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations
Procedia PDF Downloads 165423 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing
Authors: O. Fiquet, P. Lemarignier
Abstract:
Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.Keywords: nuclear, fuel, CERMET, robocasting
Procedia PDF Downloads 68422 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress
Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz
Abstract:
World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity
Procedia PDF Downloads 227421 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 208420 The Development of the Geological Structure of the Bengkulu Fore Arc Basin, Western Edge of Sundaland, Sumatra, and Its Relationship to Hydrocarbon Trapping Mechanism
Authors: Lauti Dwita Santy, Hermes Panggabean, Syahrir Andi Mangga
Abstract:
The Bengkulu Basin is part of the Sunda Arc system, which is a classic convergent type margin that occur around the southern rim of the Eurasian continental (Sundaland) plate. The basin is located between deep sea trench (Mentawai Outer Arc high) and the volvanic/ magmatic Arc of the Barisan Mountains Range. To the northwest it is bounded by Padang High, to the northest by Barisan Mountains (Sumatra Fault Zone) to the southwest by Mentawai Fault Zone and to the southeast by Semangko High/ Sunda Strait. The stratigraphic succession and tectonic development can be broadly divided into four stage/ periods, i.e Late Jurassic- Early Cretaceous, Late Eocene-Early Oligocene, Late Oligocene-Early Miocene, Middle Miocene-Late Miocene and Pliocene-Plistocene, which are mainly controlled by the development of subduction activities. The Pre Tertiary Basement consist of sedimentary and shallow water limestone, calcareous mudstone, cherts and tholeiitic volcanic rocks, with Late Jurassic to Early Cretaceous in age. The sedimentation in this basin is depend on the relief of the Pre Tertiary Basement (Woyla Terrane) and occured into two stages, i.e. transgressive stage during the Latest Oligocene-Early Middle Miocene Seblat Formation, and the regressive stage during the Latest Middle Miocene-Pleistocene (Lemau, Simpangaur and Bintunan Formations). The Pre-Tertiary Faults were more intensive than the overlying cover, The Tertiary Rocks. There are two main fault trends can be distinguished, Northwest–Southwest Faults and Northeast-Southwest Faults. The NW-SE fault (Ketaun) are commonly laterally persistent, are interpreted to the part of Sumatran Fault Systems. They commonly form the boundaries to the Pre Tertiary basement highs and therefore are one of the faults elements controlling the geometry and development of the Tertiary sedimentary basins.The Northeast-Southwest faults was formed a conjugate set to the Northwest–Southeast Faults. In the earliest Tertiary and reactivated during the Plio-Pleistocene in a compressive mode with subsequent dextral displacement. The Block Faulting accross these two sets of faults related to approximate North–South compression in Paleogene time and produced a series of elongate basins separated by basement highs in the backarc and forearc region. The Bengkulu basin is interpreted having evolved from pull apart feature in the area southwest of the main Sumatra Fault System related to NW-SE trending in dextral shear.Based on Pyrolysis Yield (PY) vs Total Organic Carbon (TOC) diagram show that Seblat and Lemau Formation belongs to oil and Gas Prone with the quality of the source rocks includes into excellent and good (Lemau Formation), Fair and Poor (Seblat Formation). The fine-grained carbonaceous sediment of the Seblat dan Lemau Formations as source rocks, the coarse grained and carbonate sediments of the Seblat and Lemau Formations as reservoir rocks, claystone bed in Seblat and Lemau Formation as caprock. The source rocks maturation are late immature to early mature, with kerogen type II and III (Seblat Formation), and late immature to post mature with kerogen type I and III (Lemau Formation). The burial history show to 2500 m in depthh with paleo temperature reached 80oC. Trapping mechanism occur during Oligo–Miocene and Middle Miocene, mainly in block faulting system.Keywords: fore arc, bengkulu, sumatra, sundaland, hydrocarbon, trapping mechanism
Procedia PDF Downloads 558419 A Resolution on Ideal University Teachers Perspective of Turkish Students
Authors: Metin Özkan
Abstract:
In the last decade, Turkish higher education has been expanded dramatically. With this expansion, Turkey has come a long way in establishing an efficient system of higher education which is moving into a ‘mass’ system with institutions spanning the whole country. This expansion as a quantitative target leads to questioning the quality of higher education services. Especially, the qualities of higher education services depend on mainly quality of educators. Qualities of educators are most important in Turkish higher education system due to rapid rise in the number of universities and students. Therefore, it is seen important that reveals the portrait of ideal university teacher from the point of view student enrolled in Turkish higher education system. The purpose of this current study is to determine the portrait of ideal university teacher according to the views of Turkish Students. This research is carried out with descriptive scanning method and combined and mixed of qualitative and quantitative methodologies. Research data of qualitative section were collected at Gaziantep University with the participation of 45 students enrolled in 15 different faculties. Quantitative section was performed on 217 students. The data were obtained through semi-structured interview and “Ideal University Teacher Assessment” form developed by the researcher. The interview form consists of basically two parts. The first part of the interview was about personal information, the second part included questions about the characteristic of ideal university teacher. The questions which constitute the second part of the interview are; "what is a good university teacher like?” and “What human qualities and professional skills should a university teacher have? ". Assessment form which was created from the qualitative data obtained from interviews was used to attain scaling values for pairwise comparison and ranking judgment. According to study results, it has been found that ideal university teacher characteristics include the features like patient, tolerant, comprehensive and tolerant. Ideal university teacher, besides, implement the teaching methods like encouraging the students’ critical thinking, accepting the students’ recommendations on how to conduct the lesson and making use of the new technologies etc. Motivating and respecting the students, adopting a participative style, adopting a sincere way of manner also constitute the ideal university features relationships with students.Keywords: faculty, higher education, ideal university teacher, teacher behavior
Procedia PDF Downloads 208418 Strategies to Promote Safety and Reduce the Vulnerability of Urban Worn-out Textures to the Potential Risk of Earthquake
Authors: Bahareh Montakhabi
Abstract:
Earthquake is known as one of the deadliest natural disasters, with a high potential for damage to life and property. Some of Iran's cities were completely destroyed after major earthquakes, and the people of the region suffered a lot of mental, financial and psychological damage. Tehran is one of the cities located on the fault line. According to experts, the only city that could be severely damaged by a moderate earthquake in Earthquake Engineering Intensity Scale (EEIS) (70% destruction) is Tehran because Tehran is built precisely on the fault. Seismic risk assessment (SRA) of cities in the scale of urban areas and neighborhoods is the first phase of the earthquake crisis management process, which can provide the information required to make optimal use of available resources and facilities in order to reduce the destructive effects and consequences of an earthquake. This study has investigated strategies to promote safety and reduce the vulnerability of worn-out urban textures in the District 12 of Tehran to the potential risk of earthquake aimed at prioritizing the factors affecting the vulnerability of worn-out urban textures to earthquake crises and how to reduce them, using the analytical-exploratory method, analytical hierarchy process (AHP), Expert choice and SWOT technique. The results of SWAT and AHP analysis of the vulnerability of the worn-out textures of District 12 to internal threats (1.70) and external threats (2.40) indicate weak safety of the textures of District 12 regarding internal and external factors and a high possibility of damage.Keywords: risk management, vulnerability, worn-out textures, earthquake
Procedia PDF Downloads 193417 Halophilic Bacterium: A Review of New Studies
Authors: Bassam Al Johny
Abstract:
Halophilic bacteria are organisms which thrive in salt-rich environments, such as salt lakes, solar salterns and salt mines which contain large populations of these organisms. In biotechnology, such salt-tolerant bacteria are widely used for the production of valuable enzymes, and more than a thousand years ago humans began using salt to cure and thereby preserve perishable foods and other materials, such as hides; halophiles can be detrimental to the preservation of salt brine cured hides. The aim of this review is to provide an overview of the taxonomy of these organisms including novel isolates from rock salt, and also to discuss their current and future biotechnological and environmental uses.Keywords: hypersaline environments, halophilic bacteria, environmental application, industrial application
Procedia PDF Downloads 271416 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study
Authors: Atif Zafar, Fan Haijun
Abstract:
A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.Keywords: field development plan, reservoir characterization, reservoir engineering, well test analysis
Procedia PDF Downloads 364415 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham
Abstract:
The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault
Procedia PDF Downloads 48414 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 412413 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 164412 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 632411 Structural-Lithological Conditions of Formation of Epithermal Gold Sulphide Satellite Deposits in the North Part of Chovdar Ore Area
Authors: Nabat Gojaeva, Mikayil Naghiyev, Sultan Jafarov, Gular Mikayilova
Abstract:
Chovdar ore area is located in the contact of Dashkesan caldera and Shamkir horst-graben uplift, which comprises the central part of Lok-Karabakh Island arcs of South Caucasus metallogenic province in terms of regional tectonics. One of the main structural features of formation of the Mereh and Aghyokhush group of low sulfidation epithermal gold deposits, locating in the north peripheric part of the ore area, is involving the crossing areas of ore-hosting and ore-forming Pan-Caucasian-direction structurally-compound faults with the meridional, rhombically shaped faults. In addition, another significant feature is the temporally two- or three-stage ore formation. In the first stage -an early phase of Upper Bathonian age, sulfides are the dominant minerals, in the second stage- late ‘productive’ phase of Upper Bathonian age, mainly gold mineralization is formed. Also, in the Upper Jurassic – Lower Cretaceous ages, rarely-encountered Cu-polymetallic ore formations are documented. Finally, in the last stage, the re-dislocation of ore-formation is foreseen in the previously-formed mineralization areas. The faults in the strike and dip directions formed shearing, brecciation, sulfide mineralization aureoles, and hydrothermal alteration zones in the wall rocks along with the local depression blocks. The geological-structural analysis of the area shows that multiple and various morphogenetic volcano-tectonically fault systems have developed in the area. These fault systems have played a trap role for ore-formation in the intersected parts of faults mentioned above. Thus, in the referred parts, mostly predominance of felsic volcanism and metasomatic alteration (silicification, argillitic, etc.) of wall rocks, as well as the products of this volcanism, account for the inclusion of hydrothermal ore-forming fluids along these faults. It is possible to determine temporally and lithological-structural connection between the ore-formation along with local depression blocks and faults as borders for products of felsic volcanism of Upper Cretaceous-Lesser Jurassic ages, in the results of the replacement of hydrothermal alteration zones with relatively low-temperature metasomatic alterations while moving from the felsic parts to the margins, and due to being non-ore bearing intermediate and intermediate-felsic magmatic facies.Keywords: Aghyokhush, fault, gold deposit, Mereh
Procedia PDF Downloads 216