Search results for: electronic commerce
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2020

Search results for: electronic commerce

1690 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 191
1689 Molecular Junctions between Graphene Strips: Electronic and Transport Properties

Authors: Adel Belayadi, Ahmed Mougari, Boualem Bourahla

Abstract:

Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength.

Keywords: molecular junction, 2D-graphene nanoribbons, quantum transport properties, magnetic field

Procedia PDF Downloads 96
1688 Strategies for E-Waste Management: A Literature Review

Authors: Linh Thi Truc Doan, Yousef Amer, Sang-Heon Lee, Phan Nguyen Ky Phuc

Abstract:

During the last few decades, with the high-speed upgrade of electronic products, electronic waste (e-waste) has become one of the fastest growing wastes of the waste stream. In this context, more efforts and concerns have already been placed on the treatment and management of this waste. To mitigate their negative influences on the environment and society, it is necessary to establish appropriate strategies for e-waste management. Hence, this paper aims to review and analysis some useful strategies which have been applied in several countries to handle e-waste. Future perspectives on e-waste management are also suggested. The key findings found that, to manage e-waste successfully, it is necessary to establish effective reverse supply chains for e-waste, and raise public awareness towards the detrimental impacts of e-waste. The result of the research provides valuable insights to governments, policymakers in establishing e-waste management in a safe and sustainable manner.

Keywords: e-waste, e-waste management, life cycle assessment, recycling regulations

Procedia PDF Downloads 275
1687 Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure

Authors: Juan Xia, Jiaxu Yan, Ze Xiang Shen

Abstract:

The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping.

Keywords: 2D TMDs, electronic property, high pressure, first-principles calculations

Procedia PDF Downloads 232
1686 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 324
1685 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 118
1684 Authentication and Legal Admissibility of 'Computer Evidence from Electronic Voting Machines' in Electoral Litigation: A Qualitative Legal Analysis of Judicial Opinions of Appellate Courts in the USA

Authors: Felix O. Omosele

Abstract:

Several studies have established that electronic voting machines are prone to multi-faceted challenges. One of which is their capacity to lose votes after the ballots might have been cast. Therefore, the international consensus appears to favour the use of electronic voting machines that are accompanied with verifiable audit paper audit trail (VVPAT). At present, there is no known study that has evaluated the impacts (or otherwise) of this verification and auditing on the authentication, admissibility and evidential weight of electronically-obtained electoral data. This legal inquiry is important as elections are sometimes won or lost in courts and on the basis of such data. This gap will be filled by the present research work. Using the United States of America as a case study, this paper employed a qualitative legal analysis of several of its appellate courts’ judicial opinions. This analysis equally unearths the necessary statutory rules and regulations that are important to the research problem. The objective of the research is to highlight the roles played by VVPAT on electoral evidence- as seen from the eyes of the court. The preliminary outcome of this qualitative analysis shows that the admissibility and weight attached to ‘Computer Evidence from e-voting machines (CEEM)’ are often treated with general standards applied to other computer-stored evidence. These standards sometimes fail to embrace the peculiar challenges faced by CEEM, particularly with respect to their tabulation and transmission. This paper, therefore, argues that CEEM should be accorded unique consideration by courts. It proposes the development of a legal standard which recognises verification and auditing as ‘weight enhancers’ for electronically-obtained electoral data.

Keywords: admissibility of computer evidence, electronic voting, qualitative legal analysis, voting machines in the USA

Procedia PDF Downloads 197
1683 Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: A. Abada, S. Hiadsi, T. Ouahrani, B. Amrani, K. Amara

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field.

Keywords: half-metallic ferromagnets, full Heusler alloys, magnetic properties, electronic properties

Procedia PDF Downloads 413
1682 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems

Authors: Julio Brégains, Ángel Carro, José-Manuel Andión

Abstract:

Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.

Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching

Procedia PDF Downloads 75
1681 Electronic Patient Record (EPR) System in South Africa: Results of a Pilot Study

Authors: Temitope O. Tokosi, Visvanathan Naicker

Abstract:

Patient health records contain sensitive information for which an electronic patient record (EPR) system can safely secure and transmit amongst clinicians for use in improving health delivery. Clinician’s use of the behaviour of these systems is under scrutiny to assess their attributes towards health technology. South Africa (SA) clinicians responded to a pilot study survey to assess their understanding of EPR, what attributes are important towards technology use and more importantly streamlining the survey for a larger study. Descriptive statistics using mean scores was used because of the small sample size of 11 clinicians who completed the survey. Nine (9) constructs comprising 62 items were used and a Cronbach alpha score of 0.883 was obtained. Limitations and discussions conclude the study.

Keywords: EPR, clinicians, pilot study, South Africa

Procedia PDF Downloads 264
1680 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 422
1679 Associated Map and Inter-Purchase Time Model for Multiple-Category Products

Authors: Ching-I Chen

Abstract:

The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.

Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce

Procedia PDF Downloads 368
1678 Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2

Authors: Najebah Alsaleh, Nirpendra Singh, Udo Schwingenschlogl

Abstract:

The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

Keywords: density functional theory, thermoelectric, electronic properties, monolayer

Procedia PDF Downloads 323
1677 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 89
1676 Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere

Authors: Qian Li, Shouxiang Lu

Abstract:

With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire.

Keywords: corrosion, fire smoke, relative humidity, Sn-0.7Cu solder

Procedia PDF Downloads 365
1675 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect

Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila

Abstract:

Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.

Keywords: perovskite, PP-PW method, elastic constants, electronic band structure

Procedia PDF Downloads 437
1674 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 159
1673 A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering

Authors: Michael Johnson, Vincenzo Oliveri

Abstract:

This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed.

Keywords: problem-based learning, interdisciplinary, engineering, CanSATs

Procedia PDF Downloads 129
1672 Barriers to E-Tendering Adoption and Implementation in the Ghanaian Construction Industry

Authors: Aynur Kazaz, Yusif Inusah

Abstract:

In the bid to improve transparency and efficiency as well as to reduce the cost of the public procurement process, Ghana started implementing an electronic Government Procurement System, known as the Ghana Electronic Procurement System (GHANEPS) in November 2019. The implementation of e-tendering technology is new to the stakeholders. Therefore, this research is aimed to identify the critical barriers to e-tendering implementation in the Ghanaian construction industry. Examples of barriers to e-tendering implementation were first identified through a literature review, and questionnaires and interview questions were prepared to gather the data. This study contributes to the in-depth understanding of global e-tendering barriers in the Ghanaian construction industry. The findings could help researchers, practitioners, and governments make strategic investment decisions and overcome e-tendering challenges.

Keywords: barriers, challenges, construction industry, e-procurement, e-tendering

Procedia PDF Downloads 134
1671 Assessment Methodology of E-government Projects for the Regions of Georgia

Authors: Tina Melkoshvili

Abstract:

Drastic development of information and communication technologies in Georgia has led to the necessity of launching conceptually new, effective, flexible, transparent and society oriented form of government that is e-government. Through applying information technologies, the electronic system enables to raise the efficacy of state governance and increase citizens’ participation in the process. Focusing on the topic of e-government allows us to analyze success stories, attributed benefits and, at the same time, observes challenges hampering the government development process. There are number of methodologies elaborated to study the conditions in the field of electronic governance. They enable us to find out if the government is ready to apply broad opportunities of information and communication technologies and if the government is apt to improve the accessibility and quality of delivering mainly social services. This article seeks to provide comparative analysis of widely spread methodologies used for Electronic government projects’ assessment. It has been concluded that applying current methods of assessment in Georgia is related to difficulties due to inaccessible data and the necessity of involving number of experts. The article presents new indicators for e-government development assessment that reflect efficacy of e-government conception realization in the regions of Georgia and enables to provide quantitative evaluation of regional e-government projects including all significant aspects of development.

Keywords: development methodology, e-government in Georgia, information and communication technologies, regional government

Procedia PDF Downloads 276
1670 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 106
1669 Partner Selection in International Strategic Alliances: The Case of the Information Industry

Authors: H. Nakamura

Abstract:

This study analyzes international strategic alliances in the information industry. The purpose of this study is to clarify the strategic intention of an international alliance. Secondly, it investigates the influence of differences in the target markets of partner companies on alliances. Using an international strategy theory approach to analyze the global strategies of global companies, the study compares a database business and an electronic publishing business. In particular, these cases emphasized factors attributable to "people" and "learning", reliability and communication between organizations and the evolution of the IT infrastructure. The theory evolved in this study validates the effectiveness of these strategies.

Keywords: database business, electronic library, international strategic alliances, partner selection

Procedia PDF Downloads 372
1668 Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller

Authors: Ian A. Grout

Abstract:

In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI).

Keywords: control, hand gesture, human computer interaction, test equipment

Procedia PDF Downloads 316
1667 New Approach to Interactional Dynamics of E-mail Correspondence

Authors: Olga Karamalak

Abstract:

The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.

Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function

Procedia PDF Downloads 580
1666 Gastronomy: The Preferred Digital Business Models and Impacts in Business Economics within Hospitality, Tourism, and Catering Sectors through Online Commerce

Authors: John Oupa Hlatshwayo

Abstract:

Background: There seem to be preferred digital business models with varying impacts within hospitality, tourism and catering sub-sectors explored through online commerce, as all are ingrained in the business economics domain. Aim: A study aims to establish if such phenomena (Digital Business Models) exist and to what extent if any, within the hospitality, tourism and catering industries, respectively. Setting: This is a qualitative study conducted by exploring several (Four) institutions globally through Case Studies. Method: This research explored explanatory case studies to answer questions about ‘how’ or ’why’ with little control by a researcher over the occurrence of events. It is qualitative research, deductive, and inductive methods. Hence, a comprehensive approach to analyzing qualitative data was attainable through immersion by reading to understand the information. Findings: The results corroborated the notion that digital business models are applicable, by and large, in business economics. Thus, three sectors wherein enterprises operate in the business economics sphere have been narrowed down i.e. hospitality, tourism and catering, are also referred to as triangular polygons due to the atypical nature of being ‘stand-alone’, yet ‘sub-sectors’, but there are confounding factors to consider. Conclusion: The significance of digital business models and digital transformation shows an inevitable merger between business and technology within Hospitality, Tourism, and Catering. Contribution: Such symbiotic relationship of business and technology, persistent evolution of clients’ interface with end-products, forever changing market, current adaptation as well as adjustment to ‘new world order’ by enterprises must be embraced constantly without fail by Business Practitioners, Academics, Business Students, Organizations and Governments.

Keywords: digital business models, hospitality, tourism, catering, business economics

Procedia PDF Downloads 20
1665 Formal Development of Electronic Identity Card System Using Event-B

Authors: Tomokazu Nagata, Jawid Ahmad Baktash

Abstract:

The goal of this paper is to explore the use of formal methods for Electronic Identity Card System. Nowadays, one of the core research directions in a constantly growing distributed environment is the improvement of the communication process. The responsibility for proper verification becomes crucial. Formal methods can play an essential role in the development and testing of systems. The thesis presents two different methodologies for assessing correctness. Our first approach employs abstract interpretation techniques for creating a trace based model for Electronic Identity Card System. The model was used for building a semi decidable procedure for verifying the system model. We also developed the code for the eID System and can cover three parts login to system sending of Acknowledgment from user side, receiving of all information from server side and log out from system. The new concepts of impasse and spawned sessions that we introduced led our research to original statements about the intruder’s knowledge and eID system coding with respect to secrecy. Furthermore, we demonstrated that there is a bound on the number of sessions needed for the analysis of System.Electronic identity (eID) cards promise to supply a universal, nation-wide mechanism for user authentication. Most European countries have started to deploy eID for government and private sector applications. Are government-issued electronic ID cards the proper way to authenticate users of online services? We use the eID project as a showcase to discuss eID from an application perspective. The new eID card has interesting design features, it is contact-less, it aims to protect people’s privacy to the extent possible, and it supports cryptographically strong mutual authentication between users and services. Privacy features include support for pseudonymous authentication and per service controlled access to individual data items. The article discusses key concepts, the eID infrastructure, observed and expected problems, and open questions. The core technology seems ready for prime time and government projects deploy it to the masses. But application issues may hamper eID adoption for online applications.

Keywords: eID, event-B, Pro-B, formal method, message passing

Procedia PDF Downloads 237
1664 Role of Power Electronics in Grid Integration of Renewable Energy Systems

Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich

Abstract:

Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.

Keywords: power electronics, renewable energy, smart grid, green energy, power technology

Procedia PDF Downloads 655
1663 Design and Control Algorithms for Power Electronic Converters for EV Applications

Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski

Abstract:

The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.

Keywords: electric vehicles, electrical machines control, power electronics, powerflow regulations

Procedia PDF Downloads 560
1662 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 320
1661 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory

Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed

Abstract:

The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.

Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states

Procedia PDF Downloads 114