Search results for: deep layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4448

Search results for: deep layer

4118 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 551
4117 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 197
4116 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns

Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad

Abstract:

Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.

Keywords: laundry, porosity, reusable surgical gown, sterilization, wet bacterial penetration

Procedia PDF Downloads 277
4115 Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell

Authors: Abderrahmane Hemmani, Hamid Khachab, Dennai Benmoussa, Hassane Benslimane, Abderrachid Helmaoui

Abstract:

Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping.

Keywords: back surface field, GaAs, solar cell, technological parameters

Procedia PDF Downloads 433
4114 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 217
4113 Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets

Authors: S. Naderizadeh, A. Athanassiou, I. S. Bayer

Abstract:

This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale.

Keywords: graphene, silica nanoparticles, superhydrophobicity, thermoplastic polyurethane

Procedia PDF Downloads 186
4112 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 292
4111 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 105
4110 Research on High Dielectric HfO₂ Stack Structure Applied to Field Effect Transistors

Authors: Kuan Yu Lin, Shih Chih Chen

Abstract:

This study focuses on the Al/HfO₂/Si/Al structure to explore the electrical properties of the structure. This experiment uses a radio frequency magnetron sputtering system to deposit high dielectric materials on p-type silicon substrates of 1~10 Ω-cm (100). Consider the hafnium dioxide film as a dielectric layer. Post-deposition annealing at 750°C in nitrogen atmosphere. Electron beam evaporation of metallic aluminum is then used to complete the top/bottom electrodes. The metal is post-annealed at 450°C for 20 minutes in a nitrogen environment to complete the MOS component. Its dielectric constant, equivalent oxide layer thickness, oxide layer defects, and leakage current mechanism are discussed. At PDA 750°C-5s, the maximum k value was found to be 21.2, and the EOT was 3.68nm.

Keywords: high-k gate dielectrics, HfO₂, post deposition annealing, RF magnetic

Procedia PDF Downloads 58
4109 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 198
4108 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating

Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.

Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis

Procedia PDF Downloads 342
4107 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples

Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: building orientation, compression strength, rapid prototyping, tensile strength

Procedia PDF Downloads 697
4106 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 148
4105 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 306
4104 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
4103 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider

Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf

Abstract:

We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach

Keywords: top tagger, multivariate, deep learning, LHC, single top

Procedia PDF Downloads 111
4102 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 467
4101 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls

Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.

Abstract:

Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.

Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall

Procedia PDF Downloads 100
4100 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool

Authors: Yongrong Li, Ralf Domroes

Abstract:

Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.

Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining

Procedia PDF Downloads 205
4099 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
4098 Bifurcations of the Rotations in the Thermocapillary Flows

Authors: V. Batishchev, V. Getman

Abstract:

We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.

Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer

Procedia PDF Downloads 344
4097 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 33
4096 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves

Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel

Abstract:

Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.

Keywords: anodic bonding, evaporated glass, flow control valve, drug delivery

Procedia PDF Downloads 200
4095 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example

Authors: Guantao Bai

Abstract:

Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.

Keywords: computer vision, deep learning, public spaces, using features

Procedia PDF Downloads 70
4094 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 76
4093 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 308
4092 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 126
4091 Obsessive-Compulsive Disorder: Development of Demand-Controlled Deep Brain Stimulation with Methods from Stochastic Phase Resetting

Authors: Mahdi Akhbardeh

Abstract:

Synchronization of neuronal firing is a hallmark of several neurological diseases. Recently, stimulation techniques have been developed which make it possible to desynchronize oscillatory neuronal activity in a mild and effective way, without suppressing the neurons' firing. As yet, these techniques are being used to establish demand-controlled deep brain stimulation (DBS) techniques for the therapy of movement disorders like severe Parkinson's disease or essential tremor. We here present a first conceptualization suggesting that the nucleus accumbens is a promising target for the standard, that is, permanent high-frequency, DBS in patients with severe and chronic obsessive-compulsive disorder (OCD). In addition, we explain how demand-controlled DBS techniques may be applied to the therapy of OCD in those cases that are refractory to behavioral therapies and pharmacological treatment.

Keywords: stereotactic neurosurgery, deep brain stimulation, obsessive-compulsive disorder, phase resetting

Procedia PDF Downloads 512
4090 Effect of Dietary Supplementation of Ashwagandha (Withania somnifera) on Performance of Commercial Layer Hens

Authors: P. Arun Subhash, B. N. Suresh, M. C. Shivakumar, N. Suma

Abstract:

An experiment was conducted to study the effect of dietary supplementation of ashwagandha (Withania somnifera) root powder on the egg production performance and egg quality in commercial layer birds. A practical type layer diet was prepared as per Bureau of Indian Standards (1992) to serve as the control, and the test diet was prepared by supplementing control diet with ashwagandha powder at 1kg/ton of feed. Each diet was assigned to twenty replicate groups of 5 laying hens each for duration of 84 days. The result revealed that cumulative egg production (%) was comparable between control and test group. The feed consumption and its conversion efficiency were similar among both the groups. The egg weight and egg characteristics viz., yolk index, yolk color, haugh unit score, albumen index, egg shape index and eggshell thickness were also remained similar between both the groups. It was concluded that supplementation of ashwagandha powder at 1kg/ton in layer diets has no beneficial effect on egg production and egg quality parameters.

Keywords: ashwagandha, egg production, egg quality, layers

Procedia PDF Downloads 147
4089 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 58