Search results for: bird song processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4207

Search results for: bird song processing

3877 Simple Multipath Compensation for Frequency Modulated Signals: A Case of Radio Frequency vs. Quadrature Baseband

Authors: Lusungu Ndovi

Abstract:

Radio propagation from point-to-point is affected by the physical channel in many ways. A signal arriving at a destination travels through a number of different paths which are referred to as multi-paths. Research in this area of wireless communications has progressed well over the years with the research taking different angles of focus. By this is meant that some researchers focus on ways of reducing or eluding Multipath effects whilst others focus on ways of mitigating the effects of Multipath through compensation schemes. Baseband processing is seen as one field of signal processing that is cardinal to the advancement of software-defined radio technology. This has led to wide research into the carrying out certain algorithms at baseband. This paper considers compensating for Multipath for Frequency Modulated signals. The compensation process is carried out at Radio frequency (RF) and at Quadrature baseband (QBB) and the results are compared. Simulations are carried out using MatLab so as to show the benefits of working at lower QBB frequencies than at RF.

Keywords: quadrature baseband, qadio frequency, qultipath compensation, frequency qodulation, signal processing

Procedia PDF Downloads 484
3876 A Study on the Strategy for Domestic Space Industry Activation

Authors: Hangil Park, Hwayeon Song, Jingyung Sim

Abstract:

In this study, a business ecosystem of a domestic space industry is comprehensively analyzed to derive the influence factors. The priority level of each element as well as the disparity between the ideal and reality are investigated through a literature review and an expert survey. The three major influence factors determined are: (a) investment scale and approach, (b) propulsion system, and (c) industrialization with overseas expansion. Related issues based on the current status are evaluated, followed by a proposed activation strategy. This research's findings offer a direction for R&D budget allocation and law system maintenance for the activation of the domestic space industry.

Keywords: space industry, activation, strategy, business ecosystem

Procedia PDF Downloads 372
3875 Study of Laser Induced Damage Threshold in HfO₂/SiO₂ Multilayer Films after β-Ray Irradiation

Authors: Meihua Fang, Tao Fei

Abstract:

Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO₂/SiO₂ multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold (LIDT), which includes defects, surface roughness, packing density, and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm² to 12 J/cm², i.e., 50% increase, after the film has been irradiated by 2.2×10¹³/cm² β-ray, the particle irradiation can be used as a controllable and desirable post-processing method to improve the resistance to laser induced damage.

Keywords: β-ray irradiation, multilayer film, residual stress, laser-induced damage threshold

Procedia PDF Downloads 158
3874 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading

Authors: Binger Lu

Abstract:

It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.

Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading

Procedia PDF Downloads 140
3873 A Newspapers Expectations Indicator from Web Scraping

Authors: Pilar Rey del Castillo

Abstract:

This document describes the building of an average indicator of the general sentiments about the future exposed in the newspapers in Spain. The raw data are collected through the scraping of the Digital Periodical and Newspaper Library website. Basic tools of natural language processing are later applied to the collected information to evaluate the sentiment strength of each word in the texts using a polarized dictionary. The last step consists of summarizing these sentiments to produce daily indices. The results are a first insight into the applicability of these techniques to produce periodic sentiment indicators.

Keywords: natural language processing, periodic indicator, sentiment analysis, web scraping

Procedia PDF Downloads 137
3872 Blogging Towards Recovery: The Benefits of Blogging about Recovery

Authors: Jayme R. Swanke

Abstract:

This study examined the benefits of maintaining public blogs about substance use disorder recovery. The data analyzed for this study included statements about the benefits derived by individuals who blogged about their recovery. The researcher developed classifications of statements that expressed what these individuals gained from blogging into common themes and developed an emerging theory based on these patterns. The findings indicate that these individuals in recovery benefit from blogging by developing connections, processing emotions, remaining accountable, as well as enjoying.

Keywords: substance use disorder recovery, connection, blogging, accountability, processing emotions

Procedia PDF Downloads 184
3871 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.

Keywords: mechanical properties, ECAP, titanium, biomedical applications

Procedia PDF Downloads 457
3870 Multi-Sensory Coding as Intervention Therapy for ESL Spellers with Auditory Processing Delays: A South African Case-Study

Authors: A. Van Staden, N. Purcell

Abstract:

Spelling development is complex and multifaceted and relies on several cognitive-linguistic processes. This paper explored the spelling difficulties of English second language learners with auditory processing delays. This empirical study aims to address these issues by means of an intervention design. Specifically, the objectives are: (a) to develop and implement a multi-sensory spelling program for second language learners with auditory processing difficulties (APD) for a period of 6 months; (b) to assess the efficacy of the multi-sensory spelling program and whether this intervention could significantly improve experimental learners' spelling, phonological awareness, and processing (PA), rapid automatized naming (RAN), working memory (WM), word reading and reading comprehension; and (c) to determine the relationship (or interplay) between these cognitive and linguistic skills (mentioned above), and how they influence spelling development. Forty-four English, second language learners with APD were sampled from one primary school in the Free State province. The learners were randomly assigned to either an experimental (n=22) or control group (n=22). During the implementation of the spelling program, several visual, tactile and kinesthetic exercises, including the utilization of fingerspelling were introduced to support the experimental learners’ (N = 22) spelling development. Post-test results showed the efficacy of the multi-sensory spelling program, with the experimental group who were trained in utilising multi-sensory coding and fingerspelling outperforming learners from the control group on the cognitive-linguistic, spelling and reading measures. The results and efficacy of this multi-sensory spelling program and the utilisation of fingerspelling for hearing second language learners with APD open up innovative perspectives for the prevention and targeted remediation of spelling difficulties.

Keywords: English second language spellers, auditory processing delays, spelling difficulties, multi-sensory intervention program

Procedia PDF Downloads 140
3869 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context

Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal

Abstract:

Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.

Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS

Procedia PDF Downloads 471
3868 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role

Procedia PDF Downloads 99
3867 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 173
3866 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex

Authors: Ashish Agarwal, Vaibhav Singh

Abstract:

Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.

Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas

Procedia PDF Downloads 228
3865 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 338
3864 Net Zero Energy Schools: The Starting Block for the Canadian Energy Neutral K-12 Schools

Authors: Hamed Hakim, Roderic Archambault, Charles J. Kibert, Maryam Mirhadi Fard

Abstract:

Changes in the patterns of life in the late 20th and early 21st century have created new challenges for educational systems. Greening the physical environment of school buildings has emerged as a response to some of those challenges and led to the design of energy efficient K-12 school buildings. With the advancement in knowledge and technology, the successful construction of Net Zero Energy Schools, such as the Lady Bird Johnson Middle School demonstrates a cutting edge generation of sustainable schools, and solves the former challenge of attaining energy self-sufficient educational facilities. There are approximately twenty net zero energy K-12 schools in the U.S. of which about six are located in Climate Zone 5 and 6 based on ASHRAE climate zone classification. This paper aims to describe and analyze the current status of energy efficient and NZE schools in Canada. An attempt is made to study existing U.S. energy neutral strategies closest to the climate zones in Canada (zones 5 and 6) and identify the best practices for Canadian schools.

Keywords: Canada K-12 schools, green school, energy efficient, net-zero energy schools

Procedia PDF Downloads 408
3863 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: break even point, fuzzy crisp data, fuzzy sets, productivity, productivity cycle, total productive maintenance

Procedia PDF Downloads 342
3862 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: cowpea, flexible packaging, maple pea, water activity

Procedia PDF Downloads 285
3861 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures

Authors: José Luis Carrillo-Medina, Roberto Latorre

Abstract:

Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.

Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network

Procedia PDF Downloads 496
3860 Automatic Processing of Trauma-Related Visual Stimuli in Female Patients Suffering From Post-Traumatic Stress Disorder after Interpersonal Traumatization

Authors: Theresa Slump, Paula Neumeister, Katharina Feldker, Carina Y. Heitmann, Thomas Straube

Abstract:

A characteristic feature of post-traumatic stress disorder (PTSD) is the automatic processing of disorder-specific stimuli that expresses itself in intrusive symptoms such as intense physical and psychological reactions to trauma-associated stimuli. That automatic processing plays an essential role in the development and maintenance of symptoms. The aim of our study was, therefore, to investigate the behavioral and neural correlates of automatic processing of trauma-related stimuli in PTSD. Although interpersonal traumatization is a form of traumatization that often occurs, it has not yet been sufficiently studied. That is why, in our study, we focused on patients suffering from interpersonal traumatization. While previous imaging studies on PTSD mainly used faces, words, or generally negative visual stimuli, our study presented complex trauma-related and neutral visual scenes. We examined 19 female subjects suffering from PTSD and examined 19 healthy women as a control group. All subjects did a geometric comparison task while lying in a functional-magnetic-resonance-imaging (fMRI) scanner. Trauma-related scenes and neutral visual scenes that were not relevant to the task were presented while the subjects were doing the task. Regarding the behavioral level, there were not any significant differences between the task performance of the two groups. Regarding the neural level, the PTSD patients showed significant hyperactivation of the hippocampus for task-irrelevant trauma-related stimuli versus neutral stimuli when compared with healthy control subjects. Connectivity analyses revealed altered connectivity between the hippocampus and other anxiety-related areas in PTSD patients, too. Overall, those findings suggest that fear-related areas are involved in PTSD patients' processing of trauma-related stimuli even if the stimuli that were used in the study were task-irrelevant.

Keywords: post-traumatic stress disorder, automatic processing, hippocampus, functional magnetic resonance imaging

Procedia PDF Downloads 204
3859 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 271
3858 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: gendered grammar, misogynistic language, natural language processing, neural networks

Procedia PDF Downloads 123
3857 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 185
3856 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 312
3855 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 241
3854 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 61
3853 Neural Rendering Applied to Confocal Microscopy Images

Authors: Daniel Li

Abstract:

We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.

Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing

Procedia PDF Downloads 664
3852 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 471
3851 The Roles of Health Consciousness, Health Motivation, and Trust in the Purchase Intention of Meat with Traceability

Authors: Kawpong Polyorat, Nathamon Buaprommee

Abstract:

Food safety crises including mad cow disease and bird flu have raised consumers’ concern in meat safety. In response, the meat industry has adopted traceability systems to standardize quality and safety of their meat production. Traceability, however, is still rarely positioned as a marketing tool to persuade consumers who are meat endusers. Therefore, the present study attempts to understand consumer behaviors in the context of meat with traceability system by conducting a study in Thailand where research in this area is scant. The study results, based on structural equation modeling with AMOS, reveal that, while health motivation has a significant, positive impact on traceability trust, health consciousness does not directly affect traceability. Health consciousness, nevertheless, have a positive influence on health motivation. Finally, traceability trust has a positive impact on purchase intention of meat with traceability. Research implications and future study directions conclude the study report.

Keywords: consumer behavior, health consciousness, health motivation, traceability, trust

Procedia PDF Downloads 334
3850 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms

Authors: Samantha Rix

Abstract:

The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.

Keywords: cognitive processing, language learners, language proficiency, learning strategies

Procedia PDF Downloads 479
3849 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang

Abstract:

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation

Procedia PDF Downloads 350
3848 The Quantum Theory of Music and Human Languages

Authors: Mballa Abanda Luc Aurelien Serge, Henda Gnakate Biba, Kuate Guemo Romaric, Akono Rufine Nicole, Zabotom Yaya Fadel Biba, Petfiang Sidonie, Bella Suzane Jenifer

Abstract:

The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original, and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological, and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation, and the question of modeling in the human sciences: mathematics, computer science, translation automation, and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal, and random music. The experimentation confirming the theorization, I designed a semi-digital, semi-analog application that translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music, and deterministic and random music). To test this application, I use music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). The translation is done (from writing to writing, from writing to speech, and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz, and world music or variety, etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: language, music, sciences, quantum entenglement

Procedia PDF Downloads 81