Search results for: absolute void
422 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 164421 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test
Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari
Abstract:
Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.Keywords: noor sand, liquefaction, undrained test, steady state
Procedia PDF Downloads 429420 An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming
Authors: Meesun Sun, Yongmin Kim
Abstract:
Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management.Keywords: affordability analysis, cost estimating relationship, helicopter, linear programming, maintenance cost
Procedia PDF Downloads 139419 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders
Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen
Abstract:
With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming
Procedia PDF Downloads 151418 African Horse Sickness a Possible Threat to Horses in Al-Baha
Authors: Ghanem Al-Ghamdi
Abstract:
African Horse Sickness causes significant challenges to horse practitioners and owners in Africa and possibly in certain locations in the Arab Pensila. The aim of this work was to observe a hot spot of epidemic in Al-Baha, Southwestern of Saudi Arabia that could be AHS. A five year-old horse farm that had eight horses with no history of clinical problems was visited in late October 2014. In August 2014, horses showed clinical signs of severe pain, congestion of mucus membranes, foam oozing of the nose, recumbency, difficult breath and ultimately death. The course of the disease averaged 2 days. The farm had no previous history of this episode. Other animals including camel, sheep reside the same farm sharing feeding and water sources however no obvious similar clinical problems were noticed among the two species. Five horses showed the clinical disease and all horses were lost. Veterinary help was not available for diagnosis or treatment. A follow up visit to the farm after one year indicated that the three remaining horses were healthy but were relocated to a different facility out the Al-Baha Region. The most likely cause of such clinical problem is African Horse Sickness, however clinical exam and sampling of other horses in the region is absolute must as well as examining arthropods.Keywords: African horse sickness, horses, Al-Baha, Saudi Arabia
Procedia PDF Downloads 349417 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 82416 The Appearance of Identity in the Urban Landscape by Enjoying the Natural Factors
Authors: Mehrdad Karimi, Farshad Negintaji
Abstract:
This study has examined the appearance of identity in the urban landscape and its effects on the natural factors. For this purpose, the components of place identity, emotional attachment, place dependence and social bond which totally constitute place attachment, measures it in three domains of cognitive (place identity), affective (emotional attachment) and behavioral (place dependence and social bond). In order to measure the natural factors, three components of the absolute elements, living entities, natural elements have been measured. The study is descriptive and the statistical population has been Yasouj, a city in Iran. To analyze the data the SPSS software has been used. The results in two level of descriptive and inferential statistics have been investigated. In the inferential statistics, Pearson correlation coefficient test has been used to evaluate the research hypotheses. In this study, the variable of identity is in high level and the natural factors are also in high level. These results indicate a positive relationship between place identity and natural factors. Development of environment and reaching the quality level of the personality or identity will develop the individual and society.Keywords: identity, place identity, landscape, urban landscape, landscaping
Procedia PDF Downloads 516415 Unified Assessment of Power System Reserve-based Reliability Levels
Authors: B. M. Alshammari, M. A. El-Kady
Abstract:
This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.Keywords: assessment, power system, reserve, reliability
Procedia PDF Downloads 617414 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 262413 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar
Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto
Abstract:
Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.Keywords: block caving, ground penetrating radar, reflectivity, RQD
Procedia PDF Downloads 134412 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 478411 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 110410 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 85409 Theory of Constraints: Approach for Performance Enhancement and Boosting Overhaul Activities
Authors: Sunil Dutta
Abstract:
Synchronization is defined as ‘the sequencing and re-sequencing of all relative and absolute activities in time and space and continuous alignment of those actions with purposeful objective in a complex and dynamic atmosphere. In a complex and dynamic production / maintenance setup, no single group can work in isolation for long. In addition, many activities in projects take place simultaneously at the same time. Work of every section / group is interwoven with work of others. The various activities / interactions which take place in production / overhaul workshops are interlinked because of physical requirements (information, material, workforces, equipment, and space) and dependencies. The activity sequencing is determined by physical dependencies of various department / sections / units (e.g., inventory availability must be ensured before stripping and disassembling of equipment), whereas resource dependencies do not. Theory of constraint facilitates identification, analyses and exploitation of the constraint in methodical manner. These constraints (equipment, manpower, policies etc.) prevent the department / sections / units from getting optimum exploitation of available resources. The significance of theory of constraints for achieving synchronization at overhaul workshop is illustrated in this paper.Keywords: synchronization, overhaul, throughput, obsolescence, uncertainty
Procedia PDF Downloads 351408 Embedded Acoustic Signal Processing System Using OpenMP Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
In this paper, altera de1-SoC FPGA board technology is utilized as a distinguished tool for nondestructive characterization of an aluminum circular cylindrical shell of radius ratio b/a (a: outer radius; b: inner radius). The acoustic backscattered signal processing system has been developed using OpenMP architecture. The design is built in three blocks; it is implemented per functional block, in a heterogeneous Intel-Altera system running under Linux. The useful data to determine the performances of SoC FPGA is computed by the analytical method. The exploitation of SoC FPGA has lead to obtain the backscattering form function and resonance spectra. A0 and S0 modes of propagation in the tube are shown. The findings are then compared to those achieved from the Matlab simulation of analytical method. A good agreement has, therefore, been noted. Moreover, the detailed SoC FPGA-based system has shown that acoustic spectra are performed at up to 5 times faster than the Matlab implementation using almost the same data. This FPGA-based system implementation of processing algorithms is realized with a coefficient of correlation R and absolute error respectively about 0.962 and 5 10⁻⁵.Keywords: OpenMP, signal processing system, acoustic backscattering, nondestructive characterization, thin tubes
Procedia PDF Downloads 92407 Exploring the Visual Roots of Classical Rhetoric and Its Implication for Gender Politics: Reflection upon Roman Rhetoric from a Bakhtin's Perspective
Authors: Hsiao-Yung Wang
Abstract:
This study aims to explore the visual roots of classical rhetoric and its implication for gender politics by the constant reference to Mikhail Bakhtin’s theory of novelist time. First, it attempts to clarify the argument that “visuality always has been integral to rhetorical consciousness” by critically re-reading the rhetorical theories of roman rhetorician such as Cicero and Quintilian. Thereby, the vague clues of visuality would be realized from the so-called ‘five canons of rhetoric’ (invention, arrangement, style, memory, and delivery), which originally deriving from verbal and spoken rhetorical tradition. Drawing on Mikhail Bakhtin’s elaboration of novelist time in contrast to epic time, it addresses the specific timeline inherent in the dynamics of visual rhetoric involves the refusing the ‘absolute past’, the focusing on unfinalized contemporary reality, and the expecting for open future. Taking the primary visions of Taipei LGBT parade over the past 13 years as research cases, it mentions that visuality could not only activate the rhetorical functions of classical rhetoric, but also inspire gender politics in the contemporary era.Keywords: classical rhetoric, gender politics, Mikhail Bakhtin, visuality
Procedia PDF Downloads 378406 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities
Authors: Retius Chifurira
Abstract:
Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities
Procedia PDF Downloads 200405 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland
Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig
Abstract:
Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.Keywords: collaboration, healthcare networks, palliative care, Switzerland
Procedia PDF Downloads 267404 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils
Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen
Abstract:
The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.Keywords: biological nitrogen fixation, inoculation, rhizobium, soybean
Procedia PDF Downloads 173403 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development
Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar
Abstract:
The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV
Procedia PDF Downloads 64402 Development and Characterization of Double Liposomes Based Dual Drug Delivery System for H. Pylori Targeting
Authors: Ashish Kumar Jain, Deepak Mishra
Abstract:
The objective of the present investigation was to prepare and evaluate a vesicular dual drug delivery system for effective management of mucosal ulcer. Inner encapsulating and Double liposomes were prepared by glass bead and reverse phase evaporation method respectively. The formulation consisted of inner liposomes bearing Ranitidine Bismuth Citrate (RBC) and outer liposomes encapsulating Amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC viz 91.4±1.8% and 77.2±2.1% respectively at the end of 72 hr. Furthermore binding specificity and targeting propensity toward H. pylori (SKP-56) was confirmed by agglutination and in situ adherence assay. Reduction of the absolute alcohol induced ulcerogenic index from 3.01 ± 0.25 to 0.31 ± 0.09 and 100% H. pylori clearance rate was observed. These results suggested that double liposomes are potential vector for the development of dual drug delivery for effective treatment of H. pylori-associated peptic ulcer.Keywords: double liposomes, H. pylori targeting, PE liposomes, glass-beads method, peptic ulcers
Procedia PDF Downloads 448401 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 429400 Haemobiogram after Intramuscular Administration of Amoxicillin to Sheep
Authors: Amer Elgerwi, Abdelrazzag El-Magdoub, Abubakr El-Mahmoudy
Abstract:
There are many bacterial infections affecting sheep that necessitates antibiotic intervention. Amoxicillin is among commonly used antibiotics in such case for its broad spectrum of activity. However, the side alterations in blood and organ function that may be associated during or after treatment are questionable. Therefore, the aim of the present study was to assess the possible alterations in blood parameters and organ function bio markers of sheep that may occur following intramuscular injection of amoxicillin. Amoxicillin has been administered intramuscularly to 10 sheep at a dosage regimen of 7 mg/kg of body weight for 5 successive days. Two types of blood samples (with and without anticoagulant) were collected from the jugular vein pre- and post-administration of the drug. Amoxicillin significantly (P < 0.001) increased total leukocyte count and (P < 0.05) absolute eosinophilic count when compared with those of the control samples. Aspartate aminotransferase, alkaline phosphatase and cholesterol were significantly (P < 0.05) higher than the corresponding control values. In addition, amoxicillin significantly (P < 0.05) increased blood urea nitrogen and creatinine but decreased phosphorus level when compared with those of prior-administration samples. These data may indicate that although the side changes caused by amoxicillin are minor in sheep, yet the liver and kidney functions should be monitored during its usage in therapy and it should be used with care for treatment of sheep with renal and/or hepatic impairments.Keywords: amoxicillin, biogram, haemogram, sheep
Procedia PDF Downloads 458399 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date (Phoenix dactylifera) Tablets
Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara
Abstract:
In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.Keywords: powder, tablets, date (Phoenix dactylifera L.), hardness, erosion, disintegration time, color
Procedia PDF Downloads 430398 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking
Authors: Soheib Fergani
Abstract:
This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation
Procedia PDF Downloads 65397 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements
Authors: Sabiu Bala Muhammad, Rosli Saad
Abstract:
Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity
Procedia PDF Downloads 276396 Unbreakable Obedience of Safety Regulation: The Study of Authoritarian Leadership and Safety Performance
Authors: Hong-Yi Kuo
Abstract:
Leadership is a key factor of improving workplace safety, and there have been abundant of studies which support the positive effects of appropriate leadership on employee safety performance in the western academic. However, little safety research focus on the Chinese leadership style like paternalistic leadership. To fill this gap, the resent study aims to examine the relationship between authoritarian leadership (one of the ternary mode in paternalistic leadership) and safety outcomes. This study makes hypothesis on different levels. First, on the group level, as an authoritarian leader regards safety value as the most important tasks, there would be positive effect on group safety outcomes through strengthening safety group norms by the emphasis on etiquette. Second, on the cross level, when a leader with authoritarian style has high priority on safety, employees may more obey the safety rules because of fear due to emphasis on absolute authority over the leader. Therefore, employees may show more safety performance and then increase individual safety outcomes. Survey data would be collected from 50 manufacturing groups (each group with more than 5 members and a leader) and a hierarchical linear modeling analysis would be conducted to analyze the hypothesis. Above the predictive result, the study expects to be a cornerstone of safety leadership research in the Chinese academic and practice.Keywords: safety leadership, authoritarian leadership, group norms, safety behavior, supervisor safety priority
Procedia PDF Downloads 233395 A Stochastic Volatility Model for Optimal Market-Making
Authors: Zubier Arfan, Paul Johnson
Abstract:
The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading
Procedia PDF Downloads 150394 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 149393 Towards the Unification of Hijri Calendar: A Study in the Application of Hilal Visibility Criteria According to the Agreement of Four Religious Ministers in Southeast Asia
Authors: Abdul Mufid
Abstract:
This study aims to integrate hadith, astronomy, and sociology studies in studying the accelerated implementation of the unification of the Hijri calendar through a multidisciplinary approach. The Hijri calendar is compiled based on the astronomical phenomena of regular movements of the earth, moon, and sun. Meanwhile, for the implementation of worship, the Hijri calendar must refer to the provisions of Islamic law or fiqh. To set the Hijri calendar, agreement on the criteria for the visibility of the new moon (first crescent), date limits, and absolute authority is required. Agreement on visibility criteria requires a valid basis for astronomical studies. Agreement on territorial boundaries is necessary because our earth is round, and the new moon cannot be observed simultaneously. And the agreement of the authorities is also needed to resolve unavoidable differences, especially differences in the appearance of the new moon and differences in schools of thought. The research is based on astronomical data, the experiences of Indonesia and Islamic countries regarding the Hijri calendar, in-depth and focused interviews with various sources, as well as a review of hadith literature. The results of the study show that the implementation of the unification of the Hijri calendar through the three approaches above can be carried out and can be accelerated.Keywords: calendar unification, new moon (hilal) visibility, multidisciplinary approach, the unity of the Muslims
Procedia PDF Downloads 86