Search results for: prediction modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: prediction modelling

367 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair

Authors: H. Pegram, R. Stevens, L. De Girolamo

Abstract:

Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.

Keywords: electrospinning, layering, lesion, modeling, nanofibre

Procedia PDF Downloads 138
366 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
365 In Silico Analysis of Salivary miRNAs to Identify the Diagnostic Biomarkers for Oral Cancer

Authors: Andleeb Zahra, Itrat Rubab, Sumaira Malik, Amina Khan, Muhammad Jawad Khan, M. Qaiser Fatmi

Abstract:

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Recent studies have highlighted the role of miRNA in disease pathology, indicating its potential use in an early diagnostic tool. miRNAs are small, double stranded, non-coding RNAs that regulate gene expression by deregulating mRNAs. miRNAs play important roles in modifying various cellular processes such as cell growth, differentiation, apoptosis, and immune response. Dis-regulated expression of miRNAs is known to affect the cell growth, and this may function as tumor suppressors or oncogenes in various cancers. Objectives: The main objectives of this study were to characterize the extracellular miRNAs involved in oral cancer (OC) to assist early detection of cancer as well as to propose a list of genes that can potentially be used as biomarkers of OC. We used gene expression data by microarrays already available in literature. Materials and Methods: In the first step, a total of 318 miRNAs involved in oral carcinoma were shortlisted followed by the prediction of their target genes. Simultaneously, the differentially expressed genes (DEGs) of oral carcinoma from all experiments were identified. The common genes between lists of DEGs of OC based on experimentally proven data and target genes of each miRNA were identified. These common genes are the targets of specific miRNA, which is involved in OC. Finally, a list of genes was generated which may be used as biomarker of OC. Results and Conclusion: In results, we included some of pathways in cancer to show the change in gene expression under the control of specific miRNA. Ingenuity pathway analysis (IPA) provided a list of major biomarkers like CDH2, CDK7 and functional enrichment analysis identified the role of miRNA in major pathways like cell adhesion molecules pathway affected by cancer. We observed that at least 25 genes are regulated by maximum number of miRNAs, and thereby, they can be used as biomarkers of OC. To better understand the role of miRNA with respect to their target genes further experiments are required, and our study provides a platform to better understand the miRNA-OC relationship at genomics level.

Keywords: biomarkers, gene expression, miRNA, oral carcinoma

Procedia PDF Downloads 376
364 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 94
363 Urban Waste Water Governance in South Africa: A Case Study of Stellenbosch

Authors: R. Malisa, E. Schwella, K. I. Theletsane

Abstract:

Due to climate change, population growth and rapid urbanization, the demand for water in South Africa is inevitably surpassing supply. To address similar challenges globally, there has been a paradigm shift from conventional urban waste water management “government” to a “governance” paradigm. From the governance paradigm, Integrated Urban Water Management (IUWM) principle emerged. This principle emphasizes efficient urban waste water treatment and production of high-quality recyclable effluent. In so doing mimicking natural water systems, in their processes of recycling water efficiently, and averting depletion of natural water resources.  The objective of this study was to investigate drivers of shifting the current urban waste water management approach from a “government” paradigm towards “governance”. The study was conducted through Interactive Management soft systems research methodology which follows a qualitative research design. A case study methodology was employed, guided by realism research philosophy. Qualitative data gathered were analyzed through interpretative structural modelling using Concept Star for Professionals Decision-Making tools (CSPDM) version 3.64.  The constructed model deduced that the main drivers in shifting the Stellenbosch municipal urban waste water management towards IUWM “governance” principles are mainly social elements characterized by overambitious expectations of the public on municipal water service delivery, mis-interpretation of the constitution on access to adequate clean water and sanitation as a human right and perceptions on recycling water by different communities. Inadequate public participation also emerged as a strong driver. However, disruptive events such as draught may play a positive role in raising an awareness on the value of water, resulting in a shift on the perceptions on recycled water. Once the social elements are addressed, the alignment of governance and administration elements towards IUWM are achievable. Hence, the point of departure for the desired paradigm shift is the change of water service authorities and serviced communities’ perceptions and behaviors towards shifting urban waste water management approaches from “government” to “governance” paradigm.

Keywords: integrated urban water management, urban water system, wastewater governance, wastewater treatment works

Procedia PDF Downloads 159
362 Discovering Event Outliers for Drug as Commercial Products

Authors: Arunas Burinskas, Aurelija Burinskiene

Abstract:

On average, ten percent of drugs - commercial products are not available in pharmacies due to shortage. The shortage event disbalance sales and requires a recovery period, which is too long. Therefore, one of the critical issues that pharmacies do not record potential sales transactions during shortage and recovery periods. The authors suggest estimating outliers during shortage and recovery periods. To shorten the recovery period, the authors suggest using average sales per sales day prediction, which helps to protect the data from being downwards or upwards. Authors use the outlier’s visualization method across different drugs and apply the Grubbs test for significance evaluation. The researched sample is 100 drugs in a one-month time frame. The authors detected that high demand variability products had outliers. Among analyzed drugs, which are commercial products i) High demand variability drugs have a one-week shortage period, and the probability of facing a shortage is equal to 69.23%. ii) Mid demand variability drugs have three days shortage period, and the likelihood to fall into deficit is equal to 34.62%. To avoid shortage events and minimize the recovery period, real data must be set up. Even though there are some outlier detection methods for drug data cleaning, they have not been used for the minimization of recovery period once a shortage has occurred. The authors use Grubbs’ test real-life data cleaning method for outliers’ adjustment. In the paper, the outliers’ adjustment method is applied with a confidence level of 99%. In practice, the Grubbs’ test was used to detect outliers for cancer drugs and reported positive results. The application of the Grubbs’ test is used to detect outliers which exceed boundaries of normal distribution. The result is a probability that indicates the core data of actual sales. The application of the outliers’ test method helps to represent the difference of the mean of the sample and the most extreme data considering the standard deviation. The test detects one outlier at a time with different probabilities from a data set with an assumed normal distribution. Based on approximation data, the authors constructed a framework for scaling potential sales and estimating outliers with Grubbs’ test method. The suggested framework is applicable during the shortage event and recovery periods. The proposed framework has practical value and could be used for the minimization of the recovery period required after the shortage of event occurrence.

Keywords: drugs, Grubbs' test, outlier, shortage event

Procedia PDF Downloads 135
361 The Use of Corpora in Improving Modal Verb Treatment in English as Foreign Language Textbooks

Authors: Lexi Li, Vanessa H. K. Pang

Abstract:

This study aims to demonstrate how native and learner corpora can be used to enhance modal verb treatment in EFL textbooks in mainland China. It contributes to a corpus-informed and learner-centered design of grammar presentation in EFL textbooks that enhances the authenticity and appropriateness of textbook language for target learners. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the 'secondary school' section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was analyzed in terms of the use (distributional features, semantic functions, and co-occurring constructions) and the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The analysis of distribution indicates several discrepancies between the textbook corpus and BNCS2014. The first four most frequent modal verbs in BNCS2014 are can, would, will, could, while can, will, should, could are the top four in the textbooks. Most strikingly, there is an unusually high proportion of can (41.1%) in the textbooks. The results on different meanings shows that will, would and must are the most problematic. For example, for will, the textbooks contain 20% more occurrences of 'volition' and 20% less of 'prediction' than those in BNCS2014. Regarding co-occurring structures, the textbooks over-represented the structure 'modal +do' across the nine modal verbs. Another major finding is that the structure of 'modal +have done' that frequently co-occur with could, would, should, and must is underused in textbooks. Besides, these four modal verbs are the most difficult for learners, as the error analysis shows. This study demonstrates how the synergy of native and learner corpora can be harnessed to improve EFL textbook presentation of modal verbs in a way that textbooks can provide not only authentic language used in natural discourse but also appropriate design tailed for the needs of target learners.

Keywords: English as Foreign Language, EFL textbooks, learner corpus, modal verbs, native corpus

Procedia PDF Downloads 143
360 Technological Affordances of a Mobile Fitness Application- A Role of Escapism and Social Outcome Expectation

Authors: Inje Cho

Abstract:

The leading health risks threatening the world today are associated with a modern lifestyle characterized by sedentary behavior, stress, anxiety, and an obesogenic food environment. To counter this alarming trend, the Centers for Disease Control and Prevention have proffered Physical Activity guidelines to bolster physical engagement. Concurrently, the burgeon of smartphones and mobile applications has witnessed a proliferation of fitness applications aimed at invigorating exercise adherence and real-time activity monitoring. Grounded in the Uses and gratification theory, this study delves into the technological affordances of mobile fitness applications, discerning the mediating influences of escapism and social outcome expectations on attitudes and exercise intention. The theory explains how individuals employ distinct communication mediums to satiate their exigencies and desires. Technological affordances manifest as attributes of emerging technologies that galvanize personal engagement in physical activities. Several features of mobile fitness applications include affordances for goal setting, virtual rewards, peer support, and exercise information. Escapism, denoting the inclination to disengage from normal routines, has emerged as a salient motivator for the consumption of new media. This study postulates that individual’s perceptions technological affordances within mobile fitness applications, can affect escapism and social outcome expectations, potentially influencing attitude, and behavior formation. Thus, the integrated model has been developed to empirically examine the interrelationships between technological affordances, escapism, social outcome expectations, and exercise intention. Structural Equation Modelling serves as the methodological tool, and a cohort of 400 Fitbit users shall be enlisted from the Prolific, data collection platform. A sequence of multivariate data analyses will scrutinize both the measurement and hypothesized structural models. By delving into the effects of mobile fitness applications, this study contributes to the growing of new media studies in sport management. Moreover, the novel integration of the uses and gratification theory, technological affordances, via the prism of escapism, illustrates the dynamics that underlies mobile fitness user’s attitudes and behavioral intentions. Therefore, the findings from this study contribute to theoretical understanding and provide pragmatic insights to developers and practitioners in optimizing the impact of mobile fitness applications.

Keywords: technological affordances, uses and gratification, mobile fitness apps, escapism, physical activity

Procedia PDF Downloads 81
359 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II

Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed

Abstract:

Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.

Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer

Procedia PDF Downloads 201
358 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant

Authors: John K. Avor, Choong-Koo Chang

Abstract:

The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.

Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability

Procedia PDF Downloads 173
357 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 278
356 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 54
355 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person

Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito

Abstract:

A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.

Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation

Procedia PDF Downloads 252
354 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 29
353 Estimation of Noise Barriers for Arterial Roads of Delhi

Authors: Sourabh Jain, Parul Madan

Abstract:

Traffic noise pollution has become a challenging problem for all metro cities of India due to rapid urbanization, growing population and rising number of vehicles and transport development. In Delhi the prime source of noise pollution is vehicular traffic. In Delhi it is found that the ambient noise level (Leq) is exceeding the standard permissible value at all the locations. Noise barriers or enclosures are definitely useful in obtaining effective deduction of traffic noise disturbances in urbanized areas. US’s Federal Highway Administration Model (FHWA) and Calculation of Road Traffic Noise (CORTN) of UK are used to develop spread sheets for noise prediction. Spread sheets are also developed for evaluating effectiveness of existing boundary walls abutting houses in mitigating noise, redesigning them as noise barriers. Study was also carried out to examine the changes in noise level due to designed noise barrier by using both models FHWA and CORTN respectively. During the collection of various data it is found that receivers are located far away from road at Rithala and Moolchand sites and hence extra barrier height needed to meet prescribed limits was less as seen from calculations and most of the noise diminishes by propagation effect.On the basis of overall study and data analysis, it is concluded that FHWA and CORTN models under estimate noise levels. FHWA model predicted noise levels with an average percentage error of -7.33 and CORTN predicted with an average percentage error of -8.5. It was observed that at all sites noise levels at receivers were exceeding the standard limit of 55 dB. It was seen from calculations that existing walls are reducing noise levels. Average noise reduction due to walls at Rithala was 7.41 dB and at Panchsheel was 7.20 dB and lower amount of noise reduction was observed at Friend colony which was only 5.88. It was observed from analysis that Friends colony sites need much greater height of barrier. This was because of residential buildings abutting the road. At friends colony great amount of traffic was observed since it is national highway. At this site diminishing of noise due to propagation effect was very less.As FHWA and CORTN models were developed in excel programme, it eliminates laborious calculations of noise. There was no reflection correction in FHWA models as like in CORTN model.

Keywords: IFHWA, CORTN, Noise Sources, Noise Barriers

Procedia PDF Downloads 133
352 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor

Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro

Abstract:

Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.

Keywords: control, DC motor, discrete PID, discrete state feedback

Procedia PDF Downloads 268
351 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate

Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi

Abstract:

Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.

Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI

Procedia PDF Downloads 327
350 Predicting Daily Patient Hospital Visits Using Machine Learning

Authors: Shreya Goyal

Abstract:

The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.

Keywords: machine learning, SVM, HIPAA, data

Procedia PDF Downloads 66
349 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal

Authors: Anindita Patra, Prasad K. Bhaskaran

Abstract:

The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.

Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves

Procedia PDF Downloads 225
348 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 271
347 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus

Authors: Debamitra Chakravorty, Pratap K. Parida

Abstract:

Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.

Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design

Procedia PDF Downloads 140
346 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model

Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung

Abstract:

The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.

Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation

Procedia PDF Downloads 170
345 Water Quality in Buyuk Menderes Graben, Turkey

Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi

Abstract:

Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).

Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality

Procedia PDF Downloads 536
344 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 61
343 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis

Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan

Abstract:

In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.

Keywords: discrete fuel bed, fire spread, packing ratio, wildfire

Procedia PDF Downloads 143
342 Heuristic Approaches for Injury Reductions by Reduced Car Use in Urban Areas

Authors: Stig H. Jørgensen, Trond Nordfjærn, Øyvind Teige Hedenstrøm, Torbjørn Rundmo

Abstract:

The aim of the paper is to estimate and forecast road traffic injuries in the coming 10-15 years given new targets in urban transport policy and shifts of mode of transport, including injury cross-effects of mode changes. The paper discusses possibilities and limitations in measuring and quantifying possible injury reductions. Injury data (killed and seriously injured road users) from six urban areas in Norway from 1998-2012 (N= 4709 casualties) form the basis for estimates of changing injury patterns. For the coming period calculation of number of injuries and injury rates by type of road user (categories of motorized versus non-motorized) by sex, age and type of road are made. A prognosticated population increase (25 %) in total population within 2025 in the six urban areas will curb the proceeded fall in injury figures. However, policy strategies and measures geared towards a stronger modal shift from use of private vehicles to safer public transport (bus, train) will modify this effect. On the other side will door to door transport (pedestrians on their way to/from public transport nodes) imply a higher exposure for pedestrians (bikers) converting from private vehicle use (including fall accidents not registered as traffic accidents). The overall effect is the sum of these modal shifts in the increasing urban population and in addition diminishing return to the majority of road safety countermeasures has also to be taken into account. The paper demonstrates how uncertainties in the various estimates (prediction factors) on increasing injuries as well as decreasing injury figures may partly offset each other. The paper discusses road safety policy and welfare consequences of transport mode shift, including reduced use of private vehicles, and further environmental impacts. In this regard, safety and environmental issues will as a rule concur. However pursuing environmental goals (e.g. improved air quality, reduced co2 emissions) encouraging more biking may generate more biking injuries. The study was given financial grants from the Norwegian Research Council’s Transport Safety Program.

Keywords: road injuries, forecasting, reduced private care use, urban, Norway

Procedia PDF Downloads 238
341 Impacts of Climate Change and Natural Gas Operations on the Hydrology of Northeastern BC, Canada: Quantifying the Water Budget for Coles Lake

Authors: Sina Abadzadesahraei, Stephen Déry, John Rex

Abstract:

Climate research has repeatedly identified strong associations between anthropogenic emissions of ‘greenhouses gases’ and observed increases of global mean surface air temperature over the past century. Studies have also demonstrated that the degree of warming varies regionally. Canada is not exempt from this situation, and evidence is mounting that climate change is beginning to cause diverse impacts in both environmental and socio-economic spheres of interest. For example, northeastern British Columbia (BC), whose climate is controlled by a combination of maritime, continental and arctic influences, is warming at a greater rate than the remainder of the province. There are indications that these changing conditions are already leading to shifting patterns in the region’s hydrological cycle, and thus its available water resources. Coincident with these changes, northeastern BC is undergoing rapid development for oil and gas extraction: This depends largely on subsurface hydraulic fracturing (‘fracking’), which uses enormous amounts of freshwater. While this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. In this turn demands a comprehensive understanding of how water in all its forms interacts with landscapes, the atmosphere, and of the potential impacts of changing climatic conditions on these processes. The aim of this study is therefore to characterize and quantify all components of the water budget in the small watershed of Coles Lake (141.8 km², 100 km north of Fort Nelson, BC), through a combination of field observations and numerical modelling. Baseline information will aid the assessment of the sustainability of current and future plans for freshwater extraction by the oil and gas industry, and will help to maintain the precarious balance between economic and environmental well-being. This project is a perfect example of interdisciplinary research, in that it not only examines the hydrology of the region but also investigates how natural gas operations and growth can affect water resources. Therefore, a fruitful collaboration between academia, government and industry has been established to fulfill the objectives of this research in a meaningful manner. This project aims to provide numerous benefits to BC communities. Further, the outcome and detailed information of this research can be a huge asset to researchers examining the effect of climate change on water resources worldwide.

Keywords: northeastern British Columbia, water resources, climate change, oil and gas extraction

Procedia PDF Downloads 264
340 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS

Authors: Eunsu Jang, Kang Park

Abstract:

In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.

Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis

Procedia PDF Downloads 402
339 Development and Application of an Intelligent Masonry Modulation in BIM Tools: Literature Review

Authors: Sara A. Ben Lashihar

Abstract:

The heritage building information modelling (HBIM) of the historical masonry buildings has expanded lately to meet the urgent needs for conservation and structural analysis. The masonry structures are unique features for ancient building architectures worldwide that have special cultural, spiritual, and historical significance. However, there is a research gap regarding the reliability of the HBIM modeling process of these structures. The HBIM modeling process of the masonry structures faces significant challenges due to the inherent complexity and uniqueness of their structural systems. Most of these processes are based on tracing the point clouds and rarely follow documents, archival records, or direct observation. The results of these techniques are highly abstracted models where the accuracy does not exceed LOD 200. The masonry assemblages, especially curved elements such as arches, vaults, and domes, are generally modeled with standard BIM components or in-place models, and the brick textures are graphically input. Hence, future investigation is necessary to establish a methodology to generate automatically parametric masonry components. These components are developed algorithmically according to mathematical and geometric accuracy and the validity of the survey data. The main aim of this paper is to provide a comprehensive review of the state of the art of the existing researches and papers that have been conducted on the HBIM modeling of the masonry structural elements and the latest approaches to achieve parametric models that have both the visual fidelity and high geometric accuracy. The paper reviewed more than 800 articles, proceedings papers, and book chapters focused on "HBIM and Masonry" keywords from 2017 to 2021. The studies were downloaded from well-known, trusted bibliographic databases such as Web of Science, Scopus, Dimensions, and Lens. As a starting point, a scientometric analysis was carried out using VOSViewer software. This software extracts the main keywords in these studies to retrieve the relevant works. It also calculates the strength of the relationships between these keywords. Subsequently, an in-depth qualitative review followed the studies with the highest frequency of occurrence and the strongest links with the topic, according to the VOSViewer's results. The qualitative review focused on the latest approaches and the future suggestions proposed in these researches. The findings of this paper can serve as a valuable reference for researchers, and BIM specialists, to make more accurate and reliable HBIM models for historic masonry buildings.

Keywords: HBIM, masonry, structure, modeling, automatic, approach, parametric

Procedia PDF Downloads 168
338 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 72