Search results for: cement mixture composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3957

Search results for: cement mixture composite

417 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity

Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier

Abstract:

Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.

Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP

Procedia PDF Downloads 86
416 Populism and National Unity: A Discourse Analysis of Poverty Eradication Strategies of Three Malaysian Prime Ministers

Authors: Khairil Ahmad, Jenny Gryzelius, Mohd Helmi Mohd Sobri

Abstract:

With the waning support for centrist ‘third-way’ politics across the Western world, there has been an increase in political parties and individual candidates relying on populist political discourse and rhetoric in order to capitalize on the sense of frustration apparent within the electorate. What is of note is the divergence in the discourses employed. On the one hand, there is a polarization between a growing wave of populist right-wing parties and politicians, employing a mixture of economic populism with divisive nationalistic ideals such as restricted immigration, for example, the UK’s UKIP and Donald Trump in the US. On the other hand, there are resurgent, often grassroots-led, left-wing movements and politicians, such as Podemos in Spain and Jeremy Corbyn in the UK, focusing on anti-austerity measures and inclusive policies. In general, the concept of populism is often ascribed in a pejorative way. This is despite the success of populist left-wing governments across Latin America in recent times, especially in terms of reducing poverty. Nonetheless, recently, scholars such as Ernesto Laclau have tried to rethink populism as a social scientific concept which is essential in helping us make sense of contemporary political articulations. Using Laclau’s framework, this paper seeks to analyze poverty reduction policies in different iterations in the context of the tenures of three Prime Ministers of Malaysia. The first is Abdul Razak Hussein’s New Economic Policy, which focused on uplifting the economic position of Malaysia’s majority Malay population. The second is Mahathir Mohamad’s state-led neo-liberalization of the Malaysian economy, which focused on the creation of a core group of crony elites in order to spearhead economic development. The third is current Prime Minister Najib Razak’s targeted poverty eradication strategy through a focused program which directly provides benefits to recipients such as through direct cash transfers. The paper employs a discursive approach to trace elements of populism in these cases and highlight instances of how their strategies are articulated in ways that seek to appeal towards particular visions of national unity.

Keywords: discourse analysis, Malaysia, populism, poverty eradication

Procedia PDF Downloads 316
415 Comparison of Donor Motivations in National Collegiate Athletic Association Division I vs Division II

Authors: Soojin Kim, Yongjae Kim

Abstract:

Continuous economic downturn and ongoing budget cuts poses higher education with profound challenges which has a direct impact on the collegiate athletic programs. In response to the ever-changing landscape of the fiscal environment, universities seek to boost revenues, resorting to alternative sources of funding. In particular, athletic programs have become increasingly dependent on financial support from their alumni and boosters, which is how athletic departments attempt to offset budget shortfalls and make capital improvements. Although there currently exists three major divisions within National Collegiate Athletic Association (NCAA), the majority of the sport management studies on college sport tend to focus on Division I level. Particularly within the donor motivation literature, a plethora of donor motivation studies exist, but mainly on NCAA Division I athletic programs. Since each athletic department functions differently in a number of different dimensions, while institutional difference can also have a huge impact on athletic donor motivations, the current study attempts to fill this gap that exists in the literature. As such, the purpose of this study was to (I) reexamine the factor structure of the Athletic Donor motivation scale; and (II) identify the prominent athletic donor motives in a NCAA Division II athletic program. For the purpose of this study, a total of 232 actual donors were used for analysis. A confirmatory factor analysis (CFA) was employed to test construct validity, and the reliability of the scale was assessed using Composite Reliability. To identify the prominent motivational factors, the means and standard deviations were examined. Results of this study indicated that Vicarious Achievement, Philanthropy, and Commitment are the three primary motivational factors, while Tangible Benefits, was consistently found as an important motive in prior studies was found low. Such findings highlight the key difference and suggest different salient motivations exist that are specific to the context.

Keywords: college athletics, donor, motivation, NCAA

Procedia PDF Downloads 144
414 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 142
413 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 194
412 Valorization of Seafood and Poultry By-Products as Gelatin Source and Quality Assessment

Authors: Elif Tugce Aksun Tumerkan, Umran Cansu, Gokhan Boran, Fatih Ozogul

Abstract:

Gelatin is a mixture of peptides obtained from collagen by partial thermal hydrolysis. It is an important and useful biopolymer that is used in the food, pharmacy, and photography products. Generally, gelatins are sourced from pig skin and bones, beef bone and hide, but within the last decade, using alternative gelatin resources has attracted some interest. In this study, functional properties of gelatin extracted from seafood and poultry by-products were evaluated. For this purpose, skins of skipjack tuna (Katsuwonus pelamis) and frog (Rana esculata) were used as seafood by-products and chicken skin as poultry by-product as raw material for gelatin extraction. Following the extraction of gelatin, all samples were lyophilized and stored in plastic bags at room temperature. For comparing gelatins obtained; chemical composition, common quality parameters including bloom value, gel strength, and viscosity in addition to some others like melting and gelling temperatures, hydroxyproline content, and colorimetric parameters were determined. The results showed that the highest protein content obtained in frog gelatin with 90.1% and the highest hydroxyproline content was in chicken gelatin with 7.6% value. Frog gelatin showed a significantly higher (P < 0.05) melting point (42.7°C) compared to that of fish (29.7°C) and chicken (29.7°C) gelatins. The bloom value of gelatin from frog skin was found higher (363 g) than chicken and fish gelatins (352 and 336 g, respectively) (P < 0.05). While fish gelatin had higher lightness (L*) value (92.64) compared to chicken and frog gelatins, redness/greenness (a*) value was significantly higher in frog skin gelatin. Based on the results obtained, it can be concluded that skins of different animals with high commercial value may be utilized as alternative sources to produce gelatin with high yield and desirable functional properties. Functional and quality analysis of gelatin from frog, chicken, and tuna skin showed by-product of poultry and seafood can be used as an alternative gelatine source to mammalian gelatine. The functional properties, including bloom strength, melting points, and viscosity of gelatin from frog skin were more admirable than that of the chicken and tuna skin. Among gelatin groups, significant characteristic differences such as gel strength and physicochemical properties were observed based on not only raw material but also the extraction method.

Keywords: chicken skin, fish skin, food industry, frog skin, gel strength

Procedia PDF Downloads 159
411 Syngas From Polypropylene Gasification in a Fluidized Bed

Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo

Abstract:

In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.

Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle

Procedia PDF Downloads 22
410 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine

Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.

Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence

Procedia PDF Downloads 207
409 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 264
408 Fatty Acid Profile and Dietary Fibre Contents of Some Standardized Soups and Dishes Consumed in Nigeria

Authors: Olufunke O. Obanla, Oluseye O. Onabanjo, Silifat A. Sanni, Mojisola O. Adegunwa, Wasiu A. O. Afolabi, Omolola O. Oyawoye, Atinuke Titilola Lano-Maduagu

Abstract:

Background: Dietary fat is implicated in the increasing development of chronic diseases in developing countries while dietary fibre plays a major role in the management of these diseases. Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. Methods: Representative samples of standardized Nigerian soups and dishes were analyzed for fatty acids using gas chromatography-mass spectrophotometry (GC-MS) and dietary fibre using an enzymatic-gravimetric standard method of AOAC. Results: The total Saturated Fatty acids (SFAs) ranged from 0.74+0.3g/100g to 73.82+0.07g/100g. The total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) ranged from 2.16+1.13g/100g for Yam pottage to 22.25+0.58g/100g for Okazi soup and eba, and from 0.42+0.10g/100g for Yam pottage to 10.22+0.1g/100g for Pounded yam with egusi ball soup, respectively. Trans fat was observed in Alapafubu and Tuwo shinkafa (2.80+0.2g/100g), Yam pottage (0.20+0.15g/100g), Steamed bean pudding (1.28+0.53g/100g) and Ikokore (5.33+0.41g/100g). The Total Dietary Fibre (TDF) contents of the dishes ranged from 12.95+2.99g/100g in Jollof rice to 62.00+0.94g/100g in Melon seed and vegetable soup, the Soluble Dietary Fibre (SDF) ranged from 2.05+0.32g/100g in Steamed bean pudding to 7.81+0.74g/100g in Ikokore while the Insoluble Dietary Fibre (IDF) ranged from 8.20+0.43g/100g in Jollof rice to 57.91+4.69g/100g in melon seed and vegetable soup. Conclusions: The study has indicated that some Nigerian dishes are characterized by high SFAs, TFAs and dietary fibre, moderate MUFAs and very low levels of PUFAs. High levels of SFAs in some soups and dishes are a major public health concern.

Keywords: healthy diet, dietary fibre, fatty acid profile, chronic diseases, Nigerian dishes

Procedia PDF Downloads 370
407 Navigating through Uncertainty: An Explorative Study of Managers’ Experiences in China-foreign Cooperative Higher Education

Authors: Qian Wang, Haibo Gu

Abstract:

To drive practical interpretations and applications of various policies in building the transnational education joint-ventures, middle managers learn to navigate through uncertainties and ambiguities. However, the current literature views very little about those middle managers’ experiences, perceptions, and practices. This paper takes the empirical approach and aims to uncover the middle managers’ experiences by conducting interviews, campus visits, and document analysis. Following the qualitative research method approach, the researchers gathered information from a mixture of fourteen foreign and Chinese managers. Their perceptions of the China-foreign cooperation in higher education and their perceived roles have offered important, valuable insights to this group of people’s attitudes and management performances. The diverse cultural and demographic backgrounds contributed to the significance of the study. There are four key findings. One, middle managers’ immediate micro-contexts and individual attitudes are the top two influential factors in managers’ performances. Two, the foreign middle managers showed a stronger sense of self-identity in risk-taking. Three, the Chinese middle managers preferred to see difficulties as part of their assigned responsibilities. Four, middle managers in independent universities demonstrated a stronger sense of belonging and fewer frustrations than middle managers in secondary institutes. The researchers propose that training for managers in a transnational educational setting should consider these discoveries when select fitting topics and content. In particular, middle managers should be better prepared to anticipate their everyday jobs in the micro-environment; hence, information concerning sponsor organizations’ working culture is as essential as knowing the national and local regulations, and socio-culture. Different case studies can help the managers to recognize and celebrate the diversity in transnational education. Situational stories can help them to become aware of the diverse and wide range of work contexts so that they will not feel to be left alone when facing challenges without relevant previous experience or training. Though this research is a case study based in the Chinese transnational higher education setting, the implications could be relevant and comparable to other transnational higher education situations and help to continue expanding the potential applications in this field.

Keywords: educational management, middle manager performance, transnational higher education

Procedia PDF Downloads 157
406 Characterization of AlOOH Film Containing Mg-Al Layered Double Hydroxide Prepared on Al Alloy by Steam Coating

Authors: Ai Serizawa, Kotaro Mori, Takahiro Ishizaki

Abstract:

Al alloys have been used as advanced structural materials in automobile and railway industries because of excellent physical and mechanical properties such as low density, good heat conductivity, and high specific strength. Their low corrosion resistance, however, limits their use in the corrosive environment. To improve the corrosion resistance of the Al alloys, the development of a novel coating technology has been highly desirable. Chemical conversion methods using layered double hydroxide (LDH) have attracted much attention because the LDH can suppress corrosion reaction due to their trapping ability of corrosive anions such as Cl- between layers. In this presentation, we report on a novel preparation method of AlOOH film containing Mg-Al layered double hydroxide (LDH) on Al alloy by steam coating. The corrosion resistance of the composite film including LDH was especially focused. Al-Mg-Si alloy was used as the substrate. The substrates were ultrasonically cleaned in ethanol for 10 min. The cleaned substrates were set in the autoclave with a 100 mL capacity. 20 ml of ultrapure water was located at the bottom of the autoclave to produce steam. The autoclave was heated up to a temperature of 100 to 200 °C, and then held at this temperature for up to 48 h, and was subsequently cooled naturally to room temperature, resulting in the formation of anticorrosive films on Al alloys. The resultant films were characterized by XRD, FT-IR, FE-SEM and electrochemical measurements. FE-SEM image of film surface treated at 180 °C for 48 h demonstrated that needle-like nanostructure was densely formed on the surface. XRD patterns revealed that the film formed on the Al alloys by steam coating was composed of crystal AlOOH and Mg-Al LDH. The corrosion resistance of the film was evaluated using electrochemical measurements. The potentiodynamic polarization curves of the film coated and uncoated substrates of Al-Mg-Si alloy after immersion in the 5 wt% NaCl aqueous solution for 30 min revealed that the corrosion current density, jcorr, of the film coated sample decreased by more than two orders of magnitude as compared to the uncoated sample, indicating that the corrosion resistance of the substrates of Al-Mg-Si alloy were improved by the formation of the anticorrosive film via steam coating.

Keywords: aluminum alloy, boehmite, corrosion resistance, steam process

Procedia PDF Downloads 287
405 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples

Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson

Abstract:

Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.

Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors

Procedia PDF Downloads 235
404 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions

Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter

Abstract:

Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.

Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel

Procedia PDF Downloads 292
403 Occasional Word-Formation in Postfeminist Fiction: Cognitive Approach

Authors: Kateryna Nykytchenko

Abstract:

Modern fiction and non-fiction writers commonly use their own lexical and stylistic devices to capture a reader’s attention and bring certain thoughts and feelings to his reader. Among such devices is the appearance of one of the neologic notions – individual author’s formations: occasionalisms or nonce words. To a significant extent, the host of examples of new words occurs in chick lit genre which has experienced exponential growth in recent years. Chick Lit is a new-millennial postfeminist fiction which focuses primarily on twenty- to thirtysomething middle-class women. It brings into focus the image of 'a new woman' of the 21st century who is always fallible, funny. This paper aims to investigate different types of occasional word-formation which reflect cognitive mechanisms of conveying women’s perception of the world. Chick lit novels of Irish author Marian Keyes present genuinely innovative mixture of forms, both literary and nonliterary which is displayed in different types of occasional word-formation processes such as blending, compounding, creative respelling, etc. Crossing existing mental and linguistic boundaries, adopting herself to new and overlapping linguistic spaces, chick lit author creates new words which demonstrate the result of development and progress of language and the relationship between language, thought and new reality, ultimately resulting in hybrid word-formation (e.g. affixation or pseudoborrowing). Moreover, this article attempts to present the main characteristics of chick-lit fiction genre with the help of the Marian Keyes’s novels and their influence on occasionalisms. There has been a lack of research concerning cognitive nature of occasionalisms. The current paper intends to account for occasional word-formation as a set of interconnected cognitive mechanisms, operations and procedures meld together to create a new word. The results of the generalized analysis solidify arguments that the kind of new knowledge an occasionalism manifests is inextricably linked with cognitive procedure underlying it, which results in corresponding type of word-formation processes. In addition, the findings of the study reveal that the necessity of creating occasionalisms in postmodern fiction novels arises from the need to write in a new way keeping up with a perpetually developing world, and thus the evolution of the speaker herself and her perception of the world.

Keywords: Chick Lit, occasionalism, occasional word-formation, cognitive linguistics

Procedia PDF Downloads 179
402 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 117
401 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 207
400 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 120
399 Jute Based Biocomposites: The Future of Automobiles

Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag

Abstract:

Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.

Keywords: jute, automobile industry, biodegradability, chemical compatibilizer

Procedia PDF Downloads 454
398 Research and Design of Functional Mixed Community: A Model Based on the Construction of New Districts in China

Authors: Wu Chao

Abstract:

The urban design of the new district in China is different from other existing cities at the city planning level, including Beijing, Shanghai, Guangzhou, etc. And the urban problems of these super-cities are same as many big cities around the world. The goal of the new district construction plan is to enable people to live comfortably, to improve the well-being of residents, and to create a way of life different from that of other urban communities. To avoid the emergence of the super community, the idea of "decentralization" is taken as the overall planning idea, and the function and form of each community are set up with a homogeneous allocation of resources so that the community can grow naturally. Similar to the growth of vines in nature, each community groups are independent and connected through roads, with clear community boundaries that limit their unlimited expansion. With a community contained 20,000 people as a case, the community is a mixture for living, production, office, entertainment, and other functions. Based on the development of the Internet, to create more space for public use, and can use data to allocate resources in real time. And this kind of shared space is the main part of the activity space in the community. At the same time, the transformation of spatial function can be determined by the usage feedback of all kinds of existing space, and the use of space can be changed by the changing data. Take the residential unit as the basic building function mass, take the lower three to four floors of the building as the main flexible space for use, distribute functions such as entertainment, service, office, etc. For the upper living space, set up a small amount of indoor and outdoor activity space, also used as shared space. The transformable space of the bottom layer is evenly distributed, combined with the walking space connected the community, the service and entertainment network can be formed in the whole community, and can be used in most of the community space. With the basic residential unit as the replicable module, the design of the other residential units runs through the idea of decentralization and the concept of the vine community, and the various units are reasonably combined. At the same time, a small number of office buildings are added to meet the special office needs. The new functional mixed community can change many problems of the present city in the future construction, at the same time, it can keep its vitality through the adjustment function of the Internet.

Keywords: decentralization, mixed functional community, shared space, spatial usage data

Procedia PDF Downloads 118
397 Biotechnological Methods for the Grouting of the Tunneling Space

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.

Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space

Procedia PDF Downloads 206
396 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 186
395 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 516
394 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 13
393 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin

Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.

Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup

Procedia PDF Downloads 145
392 Oviposition Responses of the Malaria Mosquito Anopheles gambiae sensu stricto to Hay Infusion Volatiles in Laboratory Bioassays and Investigation of Volatile Detection Methods

Authors: Lynda K. Eneh, Okal N. Mike, Anna-Karin Borg-Karlson, Ulrike Fillinger, Jenny M. Lindh

Abstract:

The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) to hay infusion volatiles were evaluated under laboratory conditions. Such infusions have long been known to be effective baits for monitoring mosquitoes that vector arboviral and filarial diseases but have previously not been tested for malaria vectors. Hay infusions were prepared by adding sun-dried Bermuda grass to lake water and leaving the mixture in a covered bucket for three days. The proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated infusions ( ≥ 25%) was compared to that laid in lake water in two-choice egg-count bioassays. Furthermore, with the aim to develop a method that can be used to collect volatiles that influence the egg-laying behavior of malaria mosquitoes, different volatile trapping methods were investigated. Two different polymer-traps eluted using two different desorption methods and three parameters were investigated. Porapak®-Q traps and solvent desorption was compared to Tenax®-TA traps and thermal desorption. The parameters investigated were: collection time (1h vs. 20h), addition of salt (0.15 g/ml sodium chloride (NaCl) vs. no NaCl), and stirring the infusion (0 vs. 300 rpm). Sample analysis was with gas chromatography-mass spectrometry (GC-MS). An. gambiae s.s was ten times less likely to lay eggs in concentrated hay infusion than in lake water. The volatiles were best characterized by thermally desorbed Tenax traps, collected for 20 hours from infusion aliquots with sodium chloride added. Ten volatiles identified from headspace and previously indicated as putative oviposition semiochemicals for An. gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in egg-count bioassays. Six of these (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole and 3-methylindole), when added to lake water, were avoided for egg-laying when lake water was offered as the alternative in dual-choice egg count bioassays. These compounds likely contribute to the unfavorable oviposition responses towards hay infusions. This difference in oviposition response of different mosquito species should be considered when designing control measures.

Keywords: Anopheles gambiae, oviposition behaviour, egg-count cage bioassays, hay infusions, volatile detection, semiochemicals

Procedia PDF Downloads 346
391 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 638
390 Conjugated Linoleic Acid Effect on Body Weight and Body Composition in Women: Systematic Review and Meta-Analysis

Authors: Hanady Hamdallah, H. Elyse Ireland, John H. H. Williams

Abstract:

Conjugated linoleic acid (CLA) is a food supplement that is reported to have multiple beneficial health effects, including being anti-carcinogenic, anti-inflammatory and anti-obesity. Animal studies have shown a significant anti-obesity effect of CLA, but results in humans were inconsistent, where some of the studies found an anti-obesity effect while other studies failed to find any decline in obesity markers after CLA supplementation. This meta-analysis aimed to determine if oral CLA supplementation has been shown to reduce obesity related markers in women. Pub Med, Cochrane Library, and Google Scholar were used to identify the eligible trials using two main searching strategies: the first one was to search eligible trials using keywords 'Conjugated linoleic acid', 'CLA', 'Women', and the second strategy was to extract the eligible trials from previously published systematic reviews and meta-analyses. The eligible trials were placebo control trials where women supplemented with CLA mixture in the form of oral capsules for 6 months or less. Also, these trials provided information about body composition expressed as body weight (BW), body mass index (BMI), total body fat (TBF), percentage body fat (BF %), and/ or lean body mass (LBM). The quality of each included study was assessed using both JADAD scale and an adapted CONSERT checklist. Meta-analysis of 8 eligible trials showed that CLA supplementation was significantly associated with reduced BW (Mean ± SD, 1.2 ± 0.26 kg, p < 0.001), BMI (0.6 ± 0.13kg/m², p < 0.001) and TBF (0.76 ± 0.26 kg, p= 0.003) in women, when supplemented over 6-16 weeks. Subgroup meta-analysis demonstrated a significant reduction in BW (1.29 ± 0.31 kg, p < 0.001), BMI (0.60 ± 0.14 kg/m², p < 0.001) and TBF (0.82 ± 0.28 kg, p= 0.003) in the trials that had recruited overweight-obese women. The second subgroup meta-analysis, that considered the menopausal status of the participants, found that CLA was significantly associated with reduced BW (1.35 ± 0.37 kg, p < 0.001; 1.05 ± 0.36 kg, p= 0.003) and BMI (0.50 ± 0.17 kg/m², p= 0.003; 0.75 ± 0.2 kg/m², p < 0.001) in both pre and post-menopausal age women, respectively. A reduction in TBF (1.09 ± 0.37 kg, p= 0.003) was only significant in post-menopausal women. Interestingly, CLA supplementation was associated with a significant reduction in BW (1.05 ± 0.35 kg, p< 0.003), BMI (0.73 ± 0.2 kg/m², p < 0.001) and TBF (1.07 ± 0.36 kg, p= 0.003) in the trials without lifestyle monitoring or interventions. No significant effect of CLA on LBM was detected in this meta-analysis. This meta-analysis suggests a moderate anti-obesity effect of CLA on BW, BMI and TBF reduction in women, when supplemented over 6-16 weeks, particularly in overweight-obese women and post-menopausal women. However, this finding requires careful interpretation due to several issues in the designs of available CLA supplementation trials. More well-designed trials are required to confirm this meta-analysis results.

Keywords: body composition, body mass index, body weight, conjugated linoleic acid

Procedia PDF Downloads 288
389 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 297
388 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia

Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim

Abstract:

The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.

Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material

Procedia PDF Downloads 50