Search results for: non-formal learning contexts
4448 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics
Authors: Luisa Carrer, Lorenzo De Masi
Abstract:
In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.Keywords: gender equality, gender norms index, Facebook, machine learning, politics
Procedia PDF Downloads 784447 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1614446 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 204445 Lay Approach of Psychological Flexibility: Concept, Prototype, and Its Application in Multicultural Adaptation
Authors: Yuanyuan Shi
Abstract:
Being psychologically flexible is important, especially, under a globalized cultural milieu. Treating psychological flexibility as a form of multicultural competence, we conducted five studies to construct the lay concept of psychological flexibility (Study 1 and 2) and test the association between psychological flexibility and multicultural adaptation (Study 3-5). In Study 1, we first identified the components of psychological flexibility by prototype analysis among lay Chinese (N = 165) and American (N = 165). In Study 2, we examined the convergent validity of the lay concept of psychological flexibility consisted with hypothesized structures via survey among Chinese (N = 172) and American participants (N = 165). Then, we examined the relationship between psychological flexibility and multicultural orientation in American and Chinese contexts (Study 3, N = 6245), and tested the influence of experimentally-manipulated psychological flexibility on foreign cultural accommodation (Study 4 N = 409; Study 5, N = 320). The results showed, higher flexibility was accompanied by higher cognitive flexibility, emotion reappraisal, resilience, and openness to experience, and lower need for cognition closure; besides, people with high psychological flexible turned out to have stronger multicultural orientation and better multicultural adaptations. Our research highlights the importance of psychological flexibility in multicultural situations and extends the understanding of the relationship between multicultural experience and well-being.Keywords: adaptation, psychological flexibility, multicultural competence, multicultural orientation
Procedia PDF Downloads 2394444 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry
Authors: Samuel Ntsanwisi
Abstract:
This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning
Procedia PDF Downloads 614443 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1184442 Agricultural Extension Workers’ Education in Indonesia - Roles of Distance Education
Authors: Adhi Susilo
Abstract:
This paper addresses the roles of distance education in the agricultural extension workers’ education. Agriculture plays an important role in both poverty reduction and economic growth. The technology of agriculture in the developing world should change continuously to keep pace with rising populations and rapidly changing social, economic, and environmental conditions. Therefore, agricultural extension workers should have several competencies in order to carry out their duties properly. One of the essential competencies that they must possess is the professional competency that is directly related to their duties in carrying out extension activities. Such competency can be acquired through studying at Universitas Terbuka (UT). With its distance learning system, agricultural extension workers can study at UT without leaving their duties. This paper presenting sociological analysis and lessons learnt from the specific context of Indonesia. Diversities in geographic, demographic, social cultural and economic conditions of the country provide specific challenges for its distance education practice and the process of social transformation to which distance education can contribute. Extension officers used distance education for personal benefits and increased professional productivity. An increase in awareness is important for the further adoption of distance learning for extension purposes. Organizations in both the public and private sector must work to increase knowledge of ICTs for the benefit of stakeholders. The use of ICTs can increase productivity for extensions officers and expand educational opportunities for learners. The use of distance education by extension to disseminate educational materials around the world is widespread. Increasing awareness and use of distance learning can lead to more productive relationships between extension officers and agricultural stakeholders.Keywords: agricultural extension, demographic and geographic condition, distance education, ICTs
Procedia PDF Downloads 5154441 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1344440 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1454439 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5004438 Teaching in the Post Truth Era: A Narrative Analysis of Modern Anti-Scientific Discourses in the Classroom
Authors: Jason T. Hilton
Abstract:
The ‘post-truth era’ is marked by a shift toward a period in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief. Applying narrative analysis techniques to current public discourses in education that run counter to scientific findings, it becomes possible to identify weakness in modern pedagogy and suggest ways to counter false narratives in the classroom. Results of this study indicate that a failure to engage with popular narratives lessens teachers’ ability to be convincing in the classroom, even when presenting information supported by scientific evidence. This study seeks to empower teachers by illustrating the influence of story within the post-truth era and the ways in which narrative and rhetorical elements take hold in social media contexts. Equipped with this knowledge, teachers can create a shift in pedagogy, away from transmission of knowledge toward the crafting of powerful narratives, built upon evidence, and connected to the lives of modern learners.Keywords: 21st century learner, critical pedagogy, culture, narrative, post-truth era, social media
Procedia PDF Downloads 2664437 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1224436 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 3374435 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling
Procedia PDF Downloads 1034434 The Surgical Trainee Perception of the Operating Room Educational Environment
Authors: Neal Rupani
Abstract:
Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.Keywords: education environment, surgery, post-graduate education, OREEM
Procedia PDF Downloads 1844433 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1864432 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features
Authors: Asmaa Shehata
Abstract:
Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning
Procedia PDF Downloads 2564431 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN
Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran
Abstract:
In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS
Procedia PDF Downloads 364430 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3224429 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 444428 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1614427 Implementing Quality Improvement Projects to Enhance Contraception and Abortion Care Service Provision and Pre-Service Training of Health Care Providers
Authors: Munir Kassa, Mengistu Hailemariam, Meghan Obermeyer, Kefelegn Baruda, Yonas Getachew, Asnakech Dessie
Abstract:
Improving the quality of sexual and reproductive health services that women receive is expected to have an impact on women’s satisfaction with the services, on their continued use and, ultimately, on their ability to achieve their fertility goals or reproductive intentions. Surprisingly, however, there is little empirical evidence of either whether this expectation is correct, or how best to improve service quality within sexual and reproductive health programs so that these impacts can be achieved. The Recent focus on quality has prompted more physicians to do quality improvement work, but often without the needed skill sets, which results in poorly conceived and ultimately unsuccessful improvement initiatives. As this renders the work unpublishable, it further impedes progress in the field of health care improvement and widens the quality chasm. Moreover, since 2014, the Center for International Reproductive Health Training (CIRHT) has worked diligently with 11 teaching hospitals across Ethiopia to increase access to contraception and abortion care services. This work has included improving pre-service training through education and curriculum development, expanding hands-on training to better learn critical techniques and counseling skills, and fostering a “team science” approach to research by encouraging scientific exploration. This is the first time this systematic approach has been applied and documented to improve access to high-quality services in Ethiopia. The purpose of this article is to report initiatives undertaken, and findings concluded by the clinical service team at CIRHT in an effort to provide a pragmatic approach to quality improvement projects. An audit containing nearly 300 questions about several aspects of patient care, including structure, process, and outcome indicators was completed by each teaching hospital’s quality improvement team. This baseline audit assisted in identifying major gaps and barriers, and each team was responsible for determining specific quality improvement aims and tasks to support change interventions using Shewart’s Cycle for Learning and Improvement (the Plan-Do-Study-Act model). To measure progress over time, quality improvement teams met biweekly and compiled monthly data for review. Also, site visits to each hospital were completed by the clinical service team to ensure monitoring and support. The results indicate that applying an evidence-based, participatory approach to quality improvement has the potential to increase the accessibility and quality of services in a short amount of time. In addition, continued ownership and on-site support are vital in promoting sustainability. This approach could be adapted and applied in similar contexts, particularly in other African countries.Keywords: abortion, contraception, quality improvement, service provision
Procedia PDF Downloads 2234426 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants
Authors: Mehmet Akif Bütüner, İlhan Koşalay
Abstract:
Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.Keywords: hydroelectric, governor, anomaly detection, machine learning, regression
Procedia PDF Downloads 974425 Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children
Authors: Dipti Parida, Atasi Mohanty
Abstract:
The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students.Keywords: medium of instruction, mode of instruction, test mode, vernacular medium
Procedia PDF Downloads 3554424 Barriers and Enablers to Climate and Health Adaptation Planning in Small Urban Areas in the Great Lakes Region
Authors: Elena Cangelosi, Wayne Beyea
Abstract:
This research expands the resilience planning literature by exploring the barriers and enablers to climate and health adaptation planning for small urban, coastal Great Lakes communities. With funding from the United States Centers for Disease Control and Prevention (CDC) Climate Ready City and States Initiative, this research took place during a 3-year pilot intervention project which integrates urban planning and public health. The project used the CDC’s Building Resilience Against Climate Effects (BRACE) framework to prevent or reduce the human health impacts from climate change in Marquette County, Michigan. Using a deliberation with the analysis planning process, interviews, focus groups, and community meetings with over 25 stakeholder groups and over 100 participants identified the area’s climate-related health concerns and adaptation interventions to address those concerns. Marquette County, on the shores of Lake Superior, the largest of the Great Lakes, was selected for the project based on their existing adaptive capacity and proactive approach to climate adaptation planning. With Marquette County as the context, this study fills a gap in the adaptation literature, which currently heavily emphasizes large-urban or agriculturally-based rural areas, and largely neglects small urban areas. This research builds on the qualitative case-study, survey, and interview approach established by previous researchers on contextual barriers and enablers for adaptation planning. This research uses a case study approach, including surveys and interviews of public officials, to identify the barriers and enablers for climate and health adaptation planning for small-urban areas within a large, non-agricultural, Great Lakes county. The researchers hypothesize that the barriers and enablers will, in some cases, overlap those found in other contexts, but in many cases, will be unique to a rural setting. The study reveals that funding, staff capacity, and communication across a large, rural geography act as the main barriers, while strong networks and collaboration, interested leaders, and community interest through a strong human-land connection act as the primary enablers. Challenges unique to rural areas are revealed, including weak opportunities for grant funding, large geographical distances, communication challenges with an aging and remote population, and the out-migration of education residents. Enablers that may be unique to rural contexts include strong collaborative relationships across jurisdictions for regional work and strong connections between residents and the land. As the factors that enable and prevent climate change planning are highly contextual, understanding, and appropriately addressing the unique factors at play for small-urban communities is key for effective planning in those areas. By identifying and addressing the barriers and enablers to climate and health adaptation planning for small-urban, coastal areas, this study can help Great Lakes communities appropriately build resilience to the adverse impacts of climate change. In addition, this research expands the breadth of research and understanding of the challenges and opportunities planners confront in the face of climate change.Keywords: climate adaptation and resilience, climate change adaptation, climate change and urban resilience, governance and urban resilience
Procedia PDF Downloads 1204423 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 4234422 Emerging Issues in Early Childhood Care and Development in Nigeria
Authors: Evelyn Fabian
Abstract:
The focus of this discussion centres on the emerging issues in Early Childhood Care and development in Nigeria. Early childhood care is the bedrock of Nigeria’s educational system. However, there are critical issues that had not been addressed and it is frustrating the entire educational process. Thus, this paper will show the inter-connectedness between these issues such as poor funding, trained skillful teachers that would supervise the learning process of the kids, unconducive learning environment and lack of relevant facilities. For a clear grasp of these issues, the researcher visited 36 early childhood centres distributed across the 36 spates of Nigeria. The findings which were expressed in simple percentages revealed a near total absence or government neglect of these critical areas. The findings equally showed a misplaced priority in the government allocation of funds to early child care education and development. The study concludes that this mismatch in the training of these categories of pupils, government should expedite action in addressing these emerging issues in early childhood care and development in Nigeria.Keywords: early childhood, ECCE, education, emerging issues
Procedia PDF Downloads 5334421 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics
Authors: Adam J. Bowen
Abstract:
Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction
Procedia PDF Downloads 1204420 Education Management and Planning with Manual Based
Authors: Purna Bahadur Lamichhane
Abstract:
Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.Keywords: educatoin, planning, management, manual
Procedia PDF Downloads 124419 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 90