Search results for: cancer prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4188

Search results for: cancer prediction

678 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 130
677 Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model

Authors: Surajit Das Barman, Rakibuzzaman Shah, Apurv Kumar

Abstract:

Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes.

Keywords: pyrocumulonimbus, cloud-to-ground lightning, charge structure, surface charge density, forward flank

Procedia PDF Downloads 96
676 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil

Authors: Mary Allagoa, Abir Al-Tabbaa

Abstract:

The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.

Keywords: risk ADI, risk CDI, ILCR, novel binders, additives binders, hazard index

Procedia PDF Downloads 757
675 Evaluation of the Cytotoxicity and Genotoxicity of Chemical Material in Filters PM2.5 of the Monitoring Stations of the Network of Air Quality in the Valle De Aburrá, Colombia

Authors: Alejandra Betancur Sánchez, Carmen Elena Zapata Sánchez, Juan Bautista López Ortiz

Abstract:

Adverse effects and increased air pollution has raised concerns about regulatory policies and has fostered the development of new air quality standards; this is due to the complexity of the composition and the poorly understood reactions in the atmospheric environment. Toxic compounds act as environmental agents having various effects, from irritation to death of cells and tissues. A toxic agent is defined an adverse response in a biological system. There is a particular class that produces some kind of alteration in the genetic material or associated components, so they are recognized as genotoxic agents. Within cells, they interact directly or indirectly with DNA, causing mutations or interfere with some enzymatic repair processes or in the genesis or polymerization of proteinaceous material involved in chromosome segregation. An air pollutant may cause or contribute to increased mortality or serious illness and even pose a potential danger to human health. The aim of this study was to evaluate the effect on the viability and the genotoxic potential on the cell lines CHO-K1 and Jurkat and peripheral blood of particulate matter PM T lymphocytes 2.5 obtained from filters collected three monitoring stations network air quality Aburrá Valley. Tests, reduction of MTT, trypan blue, NRU, comet assay, sister chromatid exchange (SCE) and chromosomal aberrations allowed evidence reduction in cell viability in cell lines CHO-K1 and Jurkat and damage to the DNA from cell line CHOK1, however, no significant effects were observed in the number of SCEs and chromosomal aberrations. The results suggest that PM2.5 material has genotoxic potential and can induce cancer development, as has been suggested in other studies.

Keywords: PM2.5, cell line Jurkat, cell line CHO-K1, cytotoxicity, genotoxicity

Procedia PDF Downloads 246
674 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion

Authors: Omran M. Kenshel, Alan J. O'Connor

Abstract:

Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.

Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability

Procedia PDF Downloads 461
673 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers

Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato

Abstract:

The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.

Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence

Procedia PDF Downloads 123
672 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris

Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini

Abstract:

International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.

Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers

Procedia PDF Downloads 154
671 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 138
670 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team

Procedia PDF Downloads 134
669 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi

Abstract:

The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.

Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point

Procedia PDF Downloads 87
668 Probabilistic Building Life-Cycle Planning as a Strategy for Sustainability

Authors: Rui Calejo Rodrigues

Abstract:

Building Refurbishing and Maintenance is a major area of knowledge ultimately dispensed to user/occupant criteria. The optimization of the service life of a building needs a special background to be assessed as it is one of those concepts that needs proficiency to be implemented. ISO 15686-2 Buildings and constructed assets - Service life planning: Part 2, Service life prediction procedures, states a factorial method based on deterministic data for building components life span. Major consequences result on a deterministic approach because users/occupants are not sensible to understand the end of components life span and so simply act on deterministic periods and so costly and resources consuming solutions do not meet global targets of planet sustainability. The estimation of 2 thousand million conventional buildings in the world, if submitted to a probabilistic method for service life planning rather than a deterministic one provide an immense amount of resources savings. Since 1989 the research team nowadays stating for CEES–Center for Building in Service Studies developed a methodology based on Montecarlo method for probabilistic approach regarding life span of building components, cost and service life care time spans. The research question of this deals with the importance of probabilistic approach of buildings life planning compared with deterministic methods. It is presented the mathematic model developed for buildings probabilistic lifespan approach and experimental data is obtained to be compared with deterministic data. Assuming that buildings lifecycle depends a lot on component replacement this methodology allows to conclude on the global impact of fixed replacements methodologies such as those on result of deterministic models usage. Major conclusions based on conventional buildings estimate are presented and evaluated under a sustainable perspective.

Keywords: building components life cycle, building maintenance, building sustainability, Montecarlo Simulation

Procedia PDF Downloads 192
667 Development of a Model for Predicting Radiological Risks in Interventional Cardiology

Authors: Stefaan Carpentier, Aya Al Masri, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis, and ulceration to appear. In order to prevent these deterministic effects, a prediction of the peak skin-dose for the patient is important in order to improve the post-operative care to be given to the patient. The objective of this study is to estimate, before the intervention, the patient dose for ‘Chronic Total Occlusion (CTO)’ procedures by selecting relevant clinical indicators. Materials and methods: 103 procedures were performed in the ‘Interventional Cardiology (IC)’ department using a Siemens Artis Zee image intensifier that provides the Air Kerma of each IC exam. Peak Skin Dose (PSD) was measured for each procedure using radiochromic films. Patient parameters such as sex, age, weight, and height were recorded. The complexity index J-CTO score, specific to each intervention, was determined by the cardiologist. A correlation method applied to these indicators allowed to specify their influence on the dose. A predictive model of the dose was created using multiple linear regressions. Results: Out of 103 patients involved in the study, 5 were excluded for clinical reasons and 2 for placement of radiochromic films outside the exposure field. 96 2D-dose maps were finally used. The influencing factors having the highest correlation with the PSD are the patient's diameter and the J-CTO score. The predictive model is based on these parameters. The comparison between estimated and measured skin doses shows an average difference of 0.85 ± 0.55 Gy for doses of less than 6 Gy. The mean difference between air-Kerma and PSD is 1.66 Gy ± 1.16 Gy. Conclusion: Using our developed method, a first estimate of the dose to the skin of the patient is available before the start of the procedure, which helps the cardiologist in carrying out its intervention. This estimation is more accurate than that provided by the Air-Kerma.

Keywords: chronic total occlusion procedures, clinical experimentation, interventional radiology, patient's peak skin dose

Procedia PDF Downloads 120
666 An Exploration Survival Risk Factors of Stroke Patients at a General Hospital in Northern Taiwan

Authors: Hui-Chi Huang, Su-Ju Yang, Ching-Wei Lin, Jui-Yao Tsai, Liang-Yiang

Abstract:

Background: The most common serious complication following acute stroke is pneumonia. It has been associated with the increased morbidity, mortality, and medical cost after acute stroke in elderly patients. Purpose: The aim of this retrospective study was to investigate the relationship between stroke patients, risk factors of pneumonia, and one-year survival rates in a group of patients, in a tertiary referal center in Northern Taiwan. Methods: From January 2012 to December 2013, a total of 1730 consecutively administered stroke patients were recruited. The Survival analysis and multivariate regression analyses were used to examine the predictors for the one-year survival in stroke patients of a stroke registry database from northern Taiwan. Results: The risk of stroke mortality increased with age≧ 75 (OR=2.305, p < .0001), cancer (OR=3.221, p=<.0001), stayed in intensive care unit (ICU) (OR=2.28, p <.0006), dysphagia (OR=5.026, p<.0001), without speech therapy(OR=0.192, p < .0001),serum albumin < 2.5(OR=0.322, p=.0053) , eGFR > 60(OR=0.438, p <. 0001), admission NIHSS >11(OR=1.631, p=.0196), length of hospitalization (d) > 30(OR=0.608, p=.0227), and stroke subtype (OR=0.506, p=.0032). After adjustment of confounders, pneumonia was not significantly associated with the risk of mortality. However, it is most likely to develop in patients who are age ≧ 75, dyslipidemia , coronary artery disease , albumin < 2.5 , eGFR <60 , ventilator use , stay in ICU , dysphagia, without speech therapy , urinary tract infection , Atrial fibrillation , Admission NIHSS > 11, length of hospitalization > 30(d) , stroke severity (mRS=3-5) ,stroke Conclusion: In this study, different from previous research findings, we found that elderly age, severe neurological deficit and rehabilitation therapy were significantly associated with Post-stroke Pneumonia. However, specific preventive strategies are needed to target the high risk groups to improve their long-term outcomes after acute stroke. These findings could open new avenues in the management of stroke patients.

Keywords: stroke, risk, pneumonia, survival

Procedia PDF Downloads 226
665 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 393
664 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities

Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.

Abstract:

This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.

Keywords: acceptance, lecturers, open educational resources, knowledge sharing

Procedia PDF Downloads 40
663 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 363
662 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)

Authors: Ayobami Solomon Popoola

Abstract:

Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.

Keywords: blanching, kinetics, sugar losses, water yam

Procedia PDF Downloads 148
661 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 482
660 Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte

Authors: Chengliang Xie, Jinhyun Ryu, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang, Kye Man Cho, Dong Hoon Lee

Abstract:

Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food.

Keywords: fermentation, Lactobacillus plantarum P1201, obesity, soybean

Procedia PDF Downloads 317
659 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 346
658 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit

Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev

Abstract:

Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.

Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations

Procedia PDF Downloads 251
657 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 23
656 Treatment with RRx-001, a Minimally Toxic NLRP3 Inhibitor in Phase 3 Clinical Trials, Improves Exercise and Skeletal Muscle Oxidative Capacity in Untrained Mice

Authors: Pedro Cabrales, Scott Caroen, Tony R. Reid, Bryan Oronsky

Abstract:

Introduction and Purpose RRx-001 is an NLRP3 inhibitor and Nrf2 agonist in Phase 3 trials for the treatment of cancer. The purpose of this study was to examine whether treatment with RRx-001, given itsanti-inflammatory and antioxidant properties, improvedexercise and skeletal muscle oxidative capacity in mice on the generalpremiss that better health outcomes correlatewith more activity. Material and Methods Male and female adult mice (n=6 per group) were subjected to an endurance exercise capacity (EEC)test until exhaustion on a motorized treadmill after 3 once weekly doses of either RRx-001 5 mg/kg, RRx-001 2 mg/kg, or vehicle. The EEC protocol consisted of a treadmill velocity of 30meters per min at an uphill inclination (slope of 10%) until the mice reached fatigue, which was defined as the inability of the mice to maintain the appropriate pace despitecontinuous hand stimulation for 1 min. The concentration of malondialdehyde (MDA), an indicator of lipid peroxidation, and creatine kinase (CK), an indicator of muscle damage, in the blood samples collected immediately after the acute exercise was determined with a commercial ELISA assay kit. ResultsThe exhaustive exercise times of the RRx-001 groups were significantly longer than that of the vehicle group (p<0.05) by weeks 2 and 3. In addition, MDA levels in the gastrocnemius, soleus, and extensor digitorum longus muscles were significantly lower than those of the vehicle group were (p<0.05), as were the serum CK levels(p<0.05). ConclusionsIn conclusion, this study found that RRx-001 has anti-fatigue properties, as evidenced by an increase in exercise capacity with RRx-001 treatment, and protects against strenuous exercise-induced muscle damage and lipid peroxidation. This data potentially supports the use of RRx-001 in the clinic to improve exercise performance and reduce physical fatigue.

Keywords: RRx-001, anti-fatigue, muscle protection, increased exercise tolerance, lipid peroxidation

Procedia PDF Downloads 85
655 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 69
654 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 263
653 Early Hypothyroidism after Radiotherapy for Nasopharyngeal Carcinoma

Authors: Nejla Fourati, Zied Fessi, Fatma Dhouib, Wicem Siala, Leila Farhat, Afef Khanfir, Wafa Mnejja, Jamel Daoud

Abstract:

Purpose: Radiation induced hypothyroidism in nasopharyngeal cancer (NPC) ranged from 15% to 55%. In reported data, it is considered as a common late complication of definitive radiation and is mainly observed 2 years after the end of treatment. The aim of this study was to evaluate the incidence of early hypothyroidism within 6 months after radiotherapy. Patients and methods: From June 2017 to February 2020, 35 patients treated with concurrent chemo-radiotherapy (CCR) for NPC were included in this prospective study. Median age was 49 years [23-68] with a sex ratio of 2.88. All patients received intensity modulated radiotherapy (IMRT) at a dose of 69.96 Gy in 33 daily fractions with weekly cisplatin (40mg/m²) chemotherapy. Thyroid stimulating hormone (TSH) and Free Thyroxine 4 (FT4) dosage was performed before the start of radiotherapy and 6 months after. Different dosimetric parameters for the thyroid gland were reported: the volume (cc); the mean dose (Dmean) and the %age of volume receiving more than 45 Gy (V45Gy). Wilcoxon Test was used to compare these different parameters between patients with or without hypothyroidism. Results: At baseline, 5 patients (14.3%) had hypothyroidism and were excluded from the analysis. For the remaining 30 patients, 9 patients (30%) developed a hypothyroidism 6 months after the end of radiotherapy. The median thyroid volume was 10.3 cc [4.6-23]. The median Dmean and V45Gy were 48.3 Gy [43.15-55.4] and 74.8 [38.2-97.9] respectively. No significant difference was noted for all studied parameters. Conclusion: Early hypothyroidism occurring within 6 months after CCR for NPC seems to be a common complication (30%) that should be screened. Good patient monitoring with regular dosage of TSH and FT4 makes it possible to treat hypothyroidism in asymptomatic phase. This would be correlated with an improvement in the quality of life of these patients. The results of our study do not show a correlation between the thyroid doses and the occurrence of hypothyroidism. This is probably related to the high doses received by the thyroid in our series. These findings encourage more optimization to limit thyroid doses and then the risk of radiation-induced hypothyroidism

Keywords: nasopharyngeal carcinoma, hypothyroidism, early complication, thyroid dose

Procedia PDF Downloads 115
652 Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime

Authors: Anne Heirman, Vincent van der Noort, Rob van Son, Marije Petersen, Lisette van der Molen, Gyorgy Halmos, Richard Dirven, Michiel van den Brekel

Abstract:

Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime.

Keywords: voice prosthesis, voice rehabilitation, total laryngectomy, prosthetic leakage, device lifetime

Procedia PDF Downloads 114
651 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 60
650 The Role Previous Cytomegalovirus Infection in Subsequent Lymphoma Develompment

Authors: Amalia Ardeljan, Lexi Frankel, Divesh Manjani, Gabriela Santizo, Maximillian Guerra, Omar Rashid

Abstract:

Introduction: Cytomegalovirus (CMV) infection is a widespread infection affecting between 60-70% of people in industrialized countries. CMV has been previously correlated with a higher incidence of Hodgkin Lymphoma compared to noninfected persons. Research regarding prior CMV infection and subsequent lymphoma development is still controversial. With limited evidence, further research is needed in order to understand the relationship between previous CMV infection and subsequent lymphoma development. This study assessed the effect of CMV infection and the incidence of lymphoma afterward. Methods: A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th,10th codes, and Current Procedural Terminology (CPT) codes. These were used to identify lymphoma diagnosis in a previously CMV infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). A chi-squared test was used to assess statistical significance. Results: A total number of 14,303 patients was obtained in the CMV infected group as well as in the control population (matched by age range and CCI score). Subsequent lymphoma development was seen at a rate of 11.44% (1,637) in the CMV group and 5.74% (822) in the control group, respectively. The difference was statistically significant by p= 2.2x10-16, odds ratio = 2.696 (95% CI 2.483- 2.927). In an attempt to stratify the population by antiviral medication exposure, the outcomes were limited by the decreased number of members exposed to antiviral medication in the control population. Conclusion: This study shows a statistically significant correlation between prior CMV infection and an increased incidence of lymphoma afterward. Further exploration is needed to identify the potential carcinogenic mechanism of CMV and whether the results are attributed to a confounding bias.

Keywords: cytomegalovirus, lymphoma, cancer, microbiology

Procedia PDF Downloads 207
649 The Implementation of Poisson Impedance Inversion to Improve Hydrocarbon Reservoir Characterization in Poseidon Field, Browse Basin, Australia

Authors: Riky Tri Hartagung, Mohammad Syamsu Rosid

Abstract:

The lithology prediction process, as well as the fluid content is the most important part in the reservoir characterization. One of the methods used in this process is the simultaneous seismic inversion method. In the Posseidon field, Browse Basin, Australia, the parameters generated through simultaneous seismic inversion are not able to characterize the reservoir accurately because of the overlapping impedance values between hydrocarbon sand, water sand, and shale, which causes a high level of ambiguity in the interpretation. The Poisson Impedance inversion provides a solution to this problem by rotating the impedance a few degrees, which is obtained through the coefficient c. Coefficient c is obtained through the Target Correlation Coefficient Analysis (TCCA) by finding the optimum correlation coefficient between Poisson Impedance and the target log, namely gamma ray, effective porosity, and resistivity. Correlation of each of these target logs will produce Lithology Impedance (LI) which is sensitive to lithology sand, Porosity Impedance (ϕI) which is sensitive to porous sand, and Fluid Impedance (FI) which is sensitive to fluid content. The results show that PI gives better results in separating hydrocarbon saturated reservoir zones. Based on the results of the LI-GR crossplot, the ϕI-effective porosity crossplot, and the FI-Sw crossplot with optimum correlations of 0.74, 0.91, and 0.82 respectively, it shows that the lithology of hidrocarbon-saturated porous sand is at the value of LI ≤ 2800 (m/s)(g *cc), ϕI ≤ 5500 (m/s)(g*cc), and FI ≤ 4000 (m/s)(g*cc). The presence of low values of LI, ϕI, and FI correlates accurately with the presence of hydrocarbons in the well. Each value of c is then applied to the seismic data. The results show that the PI inversion gives a good distribution of Hydrocarbon-saturated porous sand lithology. The distribution of hydrocarbon saturated porous sand on the seismic inversion section is seen in the northeast – southwest direction, which is estimated as the direction of gas distribution.

Keywords: reservoir characterization, poisson impedance, browse basin, poseidon field

Procedia PDF Downloads 104