Search results for: shared/mental models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9348

Search results for: shared/mental models

5898 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 402
5897 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5896 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 75
5895 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load

Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie

Abstract:

This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.

Keywords: experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel

Procedia PDF Downloads 328
5894 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 175
5893 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills

Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry

Abstract:

The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.

Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel

Procedia PDF Downloads 380
5892 Shift Work and Its Consequences

Authors: Parastoo Vasli

Abstract:

In today's society, more and more people work during ‘non-standard’ working hours, including shift and night work, which are perceived danger factors for health, safety, and social prosperity. Appropriate preventive and protective measures are needed to reduce side effects and ensure that the worker can adapt sufficiently. Of the many health effects associated with shift work, sleep disorders are the most widely recognized. The most troubling acute symptoms are difficulty falling asleep, short sleep, and drowsiness during working hours that last for days on end. The outcomes checked on plainly exhibit that shift work is related to expanded mental, social, and physiological drowsiness. Apparently, the effects are due to circadian and hemostatic compounds (sleep loss). Drowsiness is especially evident during night shifts and may lead to drowsiness in real workplace accidents. In some occupations, this is clearly a risk that could endanger human lives and has enormous financial outcomes. These dangers clearly affect a large number of people and should be of great importance to society. In particular, safety on night shifts is consistently reduced.

Keywords: shift work, night work, safety, health, drowsiness

Procedia PDF Downloads 224
5891 The Relationship of Emotional Intelligence, Perceived Stress, Religious Coping with Psychological Distress among Afghan Students

Authors: Mustafa Jahanara

Abstract:

The aim of present research was to study of the relationship between emotional intelligence, perceived stress, positive religious coping with psychological distress to in a sample of undergraduate students in Polytechnic University in Kabul. One hundred and fifty-tow students (102 male, 50 female) were included in this study. All participants completed the Emotional Intelligence Scale (EIS), General Health Questionnaire (GHQ 12), Perceived Stress Scale (PSS-10), and the Brief RCOPE. The results revealed that EI was negatively associated with perceived stress and psychological distress. Also emotional intelligence was positively correlated with positive religious coping. Perceived stress was positive related with psychological distress and negatively correlated with positive religious coping. Eventually positive religious coping was significantly and negatively correlated with psychological distress. However, emotional intelligence and positive religious coping could influence on mental health.

Keywords: emotional intelligence, perceived stress, positive religious coping, psychological distress

Procedia PDF Downloads 517
5890 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players

Authors: Jo Mitchell, Daniel Johnson

Abstract:

MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.

Keywords: Australian football league, digital application, positive psychology, wellbeing

Procedia PDF Downloads 238
5889 A Tool for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: digital information management, file format, endangerment analysis, fuzzy models

Procedia PDF Downloads 404
5888 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 66
5887 DNA as an Instrument in Constructing Narratives and Justice in Criminal Investigations: A Socio-Epistemological Exploration

Authors: Aadita Chaudhury

Abstract:

Since at least the early 2000s, DNA profiling has achieved a preeminent status in forensic investigations into criminal acts. While the criminal justice system has a long history of using forensic evidence and testing them through establish technoscientific means, the primacy of DNA in establishing 'truth' or reconstructing a series of events is unparalleled in the history of forensic science. This paper seeks to elucidate the ways in which DNA profiling has become the most authoritative instrument of 'truth' in criminal investigations, and how it is used in the legal process to ascertain culpability, create the notion of infallible evidence, and advance the search for justice. It is argued that DNA profiling has created a paradigm shift in how the legal system and the general public understands crime and culpability, but not without limitations. There are indications that even trace amounts of DNA evidence can point to causal links in a criminal investigation, however, there still remains many rooms to create confusion and doubt from empirical evidence within the narrative of crimes. Many of the shortcomings of DNA-based forensic investigations are explored and evaluated with regards to claims of the authority of biological evidence and implications for the public understanding of the elusive concepts of truth and justice in the present era. Public misinformation about the forensic analysis processes could produce doubt or faith in the judgements rooted in them, depending on other variables presented at the trial. A positivist understanding of forensic science that is shared by the majority of the population does not take into consideration that DNA evidence is far from definitive, and can be used to support any theories of culpability, to create doubt and to deflect blame.

Keywords: DNA profiling, epistemology of forensic science, philosophy of forensic science, sociology of scientific knowledge

Procedia PDF Downloads 208
5886 The Experience of Gay Men Using Dating Applications in Their Emerging Adulthood

Authors: Chuang Bing-Kai, Shih Hsiang-Ju

Abstract:

Previous studies showed that emergent adults used dating applications the most since it would satisfy their needs for intimacy. It's also found that those emergent adults were mostly non-heterosexual. What’s more, in this digital era, more and more bisexuals and homosexuals choose to establish connections with others through Internet to seek a sense of belonging. However, studies rarely focused on gay men in their emergent adulthood to explore their experiences of dating applications. The purpose of this study was to explore the experience of gay men using dating applications in their emerging adulthood and to understand their self-presentations and the process of it among different relationships while interacting with others upon using dating applications. The semi-structured interview was conducted with those gay men who aged from 18 to 29, felt attracted to people with same gender physically and mentally, considered themselves homosexual from their subjective understanding and had been using dating applications for more than half a year. Research invitations were distributed with the assistance of social media platforms and LGBTQ+ friends in the community. This study adopted a qualitative research approach and applied hermeneutic phenomenology as the method to analyze the transcripts transcribed from the recorded audio, and to explore their using experiences and self-presentations while interacting with others while using dating apps. It’s expected to find out that there are four stages in the self-presentation process including establishing personal identity, self-exploration and experimentation, exploring shared interest and values, developing and maintaining connections. Plus, gay men’s motives to use dating apps play an important role in this process and thus influence how they position the apps in their life. Through this study, professional workers can better understand gay men’s considerations and strategies in their self-presentation process as well as the impact of using motives.

Keywords: dating applications, emerging adulthood, gay men, hermeneutic phenomenology

Procedia PDF Downloads 49
5885 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 156
5884 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphin D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services, and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey, and the second type of objectives is achieved through a survey of high school teachers from the ILembe and Umgungudlovu districts in the KwaZuluNatal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaire. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: attribution, cellphones, e-learning, reliability

Procedia PDF Downloads 402
5883 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 168
5882 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: climate change, downscaling, GCM, RCM

Procedia PDF Downloads 406
5881 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 164
5880 A Process of Forming a Single Competitive Factor in the Digital Camera Industry

Authors: Kiyohiro Yamazaki

Abstract:

This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.

Keywords: digital camera industry, product evolution trajectory, product platform, unification of competitive factors

Procedia PDF Downloads 158
5879 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
5878 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay

Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer

Abstract:

Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.

Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM

Procedia PDF Downloads 82
5877 Interactions between Residential Mobility, Car Ownership and Commute Mode: The Case for Melbourne

Authors: Solmaz Jahed Shiran, John Hearne, Tayebeh Saghapour

Abstract:

Daily travel behavior is strongly influenced by the location of the places of residence, education, and employment. Hence a change in those locations due to a move or changes in an occupation leads to a change in travel behavior. Given the interventions of housing mobility and travel behaviors, the hypothesis is that a mobile housing market allows households to move as a result of any change in their life course, allowing them to be closer to central services, public transport facilities and workplace and hence reducing the time spent by individuals on daily travel. Conversely, household’s immobility may lead to longer commutes of residents, for example, after a change of a job or a need for new services such as schools for children who have reached their school age. This paper aims to investigate the association between residential mobility and travel behavior. The Victorian Integrated Survey of Travel and Activity (VISTA) data is used for the empirical analysis. Car ownership and journey to work time and distance of employed people are used as indicators of travel behavior. Change of usual residence within the last five years used to identify movers and non-movers. Statistical analysis, including regression models, is used to compare the travel behavior of movers and non-movers. The results show travel time, and the distance does not differ for movers and non-movers. However, this is not the case when taking into account the residence tenure-type. In addition, car ownership rate and number found to be significantly higher for non-movers. It is hoped that the results from this study will contribute to a better understanding of factors other than common socioeconomic and built environment features influencing travel behavior.

Keywords: journey to work, regression models, residential mobility, commute mode, car ownership

Procedia PDF Downloads 134
5876 Architectural Visualization: From Ancient Civilizations to the Roman Empire

Authors: Matthias Stange

Abstract:

Architectural visualization has been practiced for as long as there have been buildings. Visualization (lat.: visibilis "visible") generally refers to bringing abstract data and relationships into a graphically, visually comprehensible form. Particularly, visualization refers to the process of translating relationships that are difficult to formulate linguistically or logically into visual media (e.g., drawings or models) to make them comprehensible. Building owners have always been interested in knowing how their building will look before it is built. In the empirical part of this study, the roots of architectural visualization are examined, starting from the ancient civilizations to the end of the Roman Empire. Extensive literature research on architectural theory and architectural history forms the basis for this analysis. The focus of the analysis is basic research from the emergence of the first two-dimensional drawings in the Neolithic period to the triggers of significant further developments of architectural representation, as well as their importance for subsequent methods and the transmission of knowledge over the following epochs. The analysis focuses on the development of analog methods of representation from the first Neolithic house floor plans to the Greek detailed stone models and paper drawings in the Roman Empire. In particular, the question of socio-cultural, socio-political, and economic changes as possible triggers for the development of representational media and methods will be analyzed. The study has shown that the development of visual building representation has been driven by scientific, technological, and social developments since the emergence of the first civilizations more than 6000 years ago first by the change in human’s subsistence strategy, from food appropriation by hunting and gathering to food production by agriculture and livestock, and the sedentary lifestyle required for this.

Keywords: ancient Greece, ancient orient, Roman Empire, architectural visualization

Procedia PDF Downloads 116
5875 Loneliness and Depression in Relation to Latchkey Situation

Authors: Samaneh Sadat Fattahi Massoom, Hossein Salimi Bajestani

Abstract:

The study examines loneliness and depression in students who regularly care for themselves after school (latchkey students) in Mashhad and compares them with parent supervised students using a causal-comparative research method. The 270 participants, aged 7 -13, were selected using convenience and cluster random-assignment sampling. Independent t-test results showed significant differences between loneliness (-4.32, p ≤ 0.05) and depression (-3.02, p ≤0.05) among latchkey and non-latchkey students. Using the Pearson correlation test, significant correlation between depression and loneliness among latchkey students was also discovered (r=0.59, p ≤ 0.05). However, regarding non latchkey students, no significant difference between loneliness and depression was observed (r= 0.02. p ≥ 0.05). Multiple regression results also showed that depression variance can be determined by gender (22%) and loneliness (34%). The findings of this study, specifically the significant difference between latchkey and non-latchkey children regarding feelings of loneliness and depression, carries clear implications for parents. It can be concluded that mothers who spend most of their time working out of the house and devoid their children of their presence in the home may cause some form of mental distress like loneliness and depression. Moreover, gender differences affect the degree of these psychological disorders.

Keywords: loneliness, depression, self-care students, latchkey and non-latchkey students, gender

Procedia PDF Downloads 414
5874 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 352
5873 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: hybrid, modeling, fast simulation, lumbar spine

Procedia PDF Downloads 306
5872 Lessons of Passive Environmental Design in the Sarabhai and Shodan Houses by Le Corbusier

Authors: Juan Sebastián Rivera Soriano, Rosa Urbano Gutiérrez

Abstract:

The Shodan House and the Sarabhai House (Ahmedabad, India, 1954 and 1955, respectively) are considered some of the most important works of Le Corbusier produced in the last stage of his career. There are some academic publications that study the compositional and formal aspects of their architectural design, but there is no in-depth investigation into how the climatic conditions of this region were a determining factor in the design decisions implemented in these projects. This paper argues that Le Corbusier developed a specific architectural design strategy for these buildings based on scientific research on climate in the Indian context. This new language was informed by a pioneering study and interpretation of climatic data as a design methodology that would even involve the development of new design tools. This study investigated whether their use of climatic data meets values and levels of accuracy obtained with contemporary instruments and tools, such as Energy Plus weather data files and Climate Consultant. It also intended to find out if Le Corbusier's office’s intentions and decisions were indeed appropriate and efficient for those climate conditions by assessing these projects using BIM models and energy performance simulations from Design Builder. Accurate models were built using original historical data through archival research. The outcome is to provide a new understanding of the environment of these houses through the combination of modern building science and architectural history. The results confirm that in these houses, it was achieved a model of low energy consumption. This paper contributes new evidence not only on exemplary modern architecture concerned with environmental performance but also on how it developed progressive thinking in this direction.

Keywords: bioclimatic architecture, Le Corbusier, Shodan, Sarabhai Houses

Procedia PDF Downloads 65
5871 Stakeholders Perceptions of the Linkage between Reproductive Rights and Environmental Sustainability: Environmental Mainstreaming, Injustice and Population Reductionism

Authors: Celine Delacroix

Abstract:

Analyses of global emission scenarios demonstrate that slowing population growth could lead to substantial emissions reductions and play an important role to avoid dangerous climate change. For this reason, the advancement of individual reproductive rights might represent a valid climate change mitigation and adaptation option. With this focus, we reflected on population ethics and the ethical dilemmas associated with environmental degradation and climate change. We conducted a mixed-methods qualitative data study consisting of an online survey followed by in-depth interviews with stakeholders of the reproductive health and rights and environmental sustainability movements to capture the ways in which the linkages between family planning, population growth, and environmental sustainability are perceived by these actors. We found that the multi-layered marginalization of this issue resulted in two processes, the polarization of opinions and its eschewal from the public fora through population reductionism. Our results indicate that stakeholders of the reproductive rights and environmental sustainability movements find that population size and family planning influence environmental sustainability and overwhelmingly find that the reproductive health and rights ideological framework should be integrated in a wider sustainability frame reflecting environmental considerations. This position, whilst majoritarily shared by all participants, was more likely to be adopted by stakeholders of the environmental sustainability sector than those from the reproductive health and rights sector. We conclude that these processes, taken in the context of a context of a climate emergency, threaten to weaken the reproductive health and rights movement.

Keywords: environmental sustainability, family planning, population growth, population ethics, reproductive rights

Procedia PDF Downloads 163
5870 Assessing Secondary School Curricula in the light of Developing Quality of Life Standards of High School Students

Authors: Othman Ali Alghtani, Yahya Abdul-Ekhalq Ali, Abdullah Abdul-Ekhalq Ali, Ahmed Al Sadiq Abdul Majeed, Najwa Attian Al-Mohammadi, Obead Mozel Alharbi, Sabri Mohamed Ismail, Omar Ibrahim Asiri

Abstract:

This study assessed the curricula of secondary schools given requirements to enhance the quality of life of students. The components of quality of life were described to build a list of standards and indicators. A questionnaire assessing the dimensions of mental (cognitive and emotional), physical, digital, and social health, and environmental awareness was prepared. A descriptive-analytical approach was used on a sample of 258 teachers and educational supervisors in Tabuk. The results indicated shortcomings in the secondary school curricula regarding developing standards and indicators of components of quality of life. Results also indicated that secondary school curricula incorporated few practices to improve student’s quality of life. No significant differences were found regarding the core subject, job, gender, and years of experience.

Keywords: assessing curricula, teacher practices, quality of life, teaching practices

Procedia PDF Downloads 267
5869 Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions

Authors: Mustafa Sertçelik, Turan Çalban, Hacali Necefoğlu, Sabri Çolak

Abstract:

In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].t

Keywords: Chevreul's salt, copper, ammonium chloride, ammonium sulphide, dissolution kinetics

Procedia PDF Downloads 308