Search results for: ontology learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7373

Search results for: ontology learning

3923 Ecocentric Principles for the Change of the Anthropocentric Design Within the Other Species Related Fields

Authors: Armando Cuspinera

Abstract:

Humans are nature itself, being with non-human species part of the same ecosystem, but the praxis reflects that not all relations are the same. In fields of design such as Biomimicry, Biodesign, and Biophilic design exist different approaches towards nature, nevertheless, anthropocentric principles such as domination, objectivization, or exploitation are defined in the same as ecocentric principles of inherent importance in life itself. Anthropocentrism has showed humanity with pollution of the earth, water, air, and the destruction of whole ecosystems from monocultures and rampant production of useless objects that life cannot outstand this unaware rhythm of life focused only for the human benefits. Even if by nature the biosphere is resilient, studies showed in the Paris Agreement explain that humanity will perish in an unconscious way of praxis. This is why is important to develop a differentiation between anthropocentric and ecocentricprinciples in the praxis of design, in order to enhance respect, valorization, and positive affectivity towards other life forms is necessary to analyze what principles are reproduced from each practice of design. It is only from the study of immaterial dimensions of design such as symbolism, epistemology, and ontology that the relation towards nature can be redesigned, and in order to do so, it must be studies from the dimensions of ontological design what principles –anthropocentric or ecocentric- through what the objects enhance or focus the perception humans have to its surrounding. The things we design also design us is the principle of ontological design, and in order to develop a way of ecological design in which is possible to consider other species as users, designers or collaborators is important to extend the studies and relation to other living forms from a transdisciplinary perspective of techniques, knowledge, practice, and disciplines in general. Materials, technologies, and any kind of knowledge have the principle of a tool: is not good nor bad, but is in the way of using it the possibilities that exist within them. The collaboration of disciplines and fields of study gives the opportunity to connect principles from other cultures such as Deep Ecology and Environmental Humanities in the development of methodologies of design that study nature, integrates their strategies to our own species, and considers life of other species as important as human life, and is only form the studies of ontological design that material and immaterial dimensions can be analyzed and imbued with structures that already exist in other fields.

Keywords: design, antropocentrism, ecocentrism, ontological design

Procedia PDF Downloads 156
3922 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 133
3921 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 41
3920 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 110
3919 Integrating Lessons in Sustainable Development and Sustainability in Undergraduate Education: The CLASIC Way

Authors: Intan Azura Mokhtar, Yaacob Ibrahim

Abstract:

In recent years, learning about sustainable development and sustainability has become an increasingly significant component in universities’ degree programmes and curricula. As the world comes together and races to fulfil the 17 United Nations’ sustainable development goals (SDGs) by the year 2030, our educational curricula and landscapes simultaneously evolve to integrate lessons and opportunities for sustainable development and sustainability to redefine our university education and set the trajectory for our young people to take the lead in co-creating solutions for a better world. In this paper, initiatives and projects that revolved around themes of sustainable development and sustainability in a young university in Singapore are discussed. These initiatives and projects were curated by a new centre in the university that focuses on community leadership, social innovation, and service learning and was led by the university’s academic staff. The university’s undergraduate students were also involved in these initiatives and projects and played an active role in reaching out to and engaging members of different segments of the community – to better understand their needs and concerns and to co-create with them relevant and sustainable solutions that generate positive social impact.

Keywords: singapore, sustainable development, sustainability, undergraduate education

Procedia PDF Downloads 98
3918 Learning And Teaching Conditions For Students With Special Needs: Asset-Oriented Perspectives And Approaches

Authors: Dr. Luigi Iannacci

Abstract:

This research critically explores the current educational landscape with respect to special education and dominant deficit/medical model discourses that continue to forward unresponsive problematic approaches to teaching students with disabilities. Asset-oriented perspectives and social/critical models of disability are defined and explicated in order to offer alternatives to these dominant discourses. To that end, a framework that draws on Brian Camborne’s conditions of learning and applications of his work in relation to instruction conceptualize learning conditions and their significance to students with special needs. Methodologically, the research is designed as Critical Narrative Inquiry (CNI). Critical incidents, interviews, documents, artefacts etc. are drawn on and narratively constructed to explore how disability is presently configured in language, discourses, pedagogies and interactions with students deemed disabled. This data was collected using ethnographic methods and as such, through participant-observer field work that occurred directly in classrooms. This narrative approach aims to make sense of complex classroom interactions and ways of reconceptualizing approaches to students with special needs. CNI is situated in the critical paradigm and primarily concerned with culture, language and participation as issues of power in need of critique with the intent of change in the direction of social justice. Research findings highlight the ways in which Cambourne’s learning conditions, such as demonstration, approximation, engagement, responsibility, immersion, expectation, employment (transfer, use), provide a clear understanding of what is central to and constitutes a responsive and inclusive this instructional frame. Examples of what each of these conditions look like in practice are therefore offered in order to concretely demonstrate the ways in which various pedagogical choices and questions can enable classroom spaces to be responsive to the assets and challenges students with special needs have and experience. These particular approaches are also illustrated through an exploration of multiliteracies theory and pedagogy and what this research and approach allows educators to draw on, facilitate and foster in terms of the ways in which students with special needs can make sense of and demonstrate their understanding of skills, content and knowledge. The contextual information, theory, research and instructional frame focused on throughout this inquiry ultimately demonstrate what inclusive classroom spaces and practice can look like. These perspectives and conceptualizations are in stark contrast to dominant deficit driven approaches that ensure current pedagogically impoverished teaching focused on narrow, limited and limiting understandings of special needs learners and their ways of knowing and acquiring/demonstrating knowledge.

Keywords: asset-oriented approach, social/critical model of disability, conditions for learning and teaching, students with special needs

Procedia PDF Downloads 69
3917 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 181
3916 Instructional Consequences of the Transiency of Spoken Words

Authors: Slava Kalyuga, Sujanya Sombatteera

Abstract:

In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.

Keywords: cognitive load, transient information, modality effect, verbal redundancy effect

Procedia PDF Downloads 381
3915 Demand of Media and Information for the Public Relation Media for Local Learning Resource Salaya, Nakhon Pathom

Authors: Patsara Sirikamonsin, Sathapath Kilaso

Abstract:

This research aims to study the media and information demand for public relations in Salaya, Nakhonpathom. The research objectives are: 1. to research on conflicts of communication and seeking solutions and improvements of media information in Salaya, Nakhonpathom; 2. to study about opinions and demand for media information to reach out the improvements of people communications among Salaya, Nakhonpathom; 3. to explore the factors related to relationship and behaviors on obtaining media information for public relations among Salaya, Nakhonpathom. The research is conducted by questionnaire which is interpreted by statistical analysis concluding with analysis, frequency, percentage, average and standard deviations. The research results demonstrate: 1. The conflicts of communications among Salaya, Nakhonpathom are lacking equipment and technological knowledge and public relations. 2. Most people have demand on media improvements for vastly broadcasting public relations in order to nourish the social values. This research intentionally is to create the infographic media which are easily accessible, uncomplicated and popular, in the present.

Keywords: media and information, the public relation printed media, local learning resource

Procedia PDF Downloads 161
3914 Teachers of the Pandemic: Retention, Resilience, and Training

Authors: Theoni Soublis

Abstract:

The COVID-19 pandemic created a severe interruption in teaching and learning in K-12 schools. It is essential that educational researchers, teachers, and administrators understand the long term effects that COVID-19 had on a variety of stakeholders in education. This investigation aims to analyze the research since the beginning of the pandemic that focuses specifically on teacher retention, resilience, and training. The results of this investigation will help to inform future research in order to better understand how the institution of education can continue to be prepared and to better prepare for future significant shifts in the modalities of instruction. The results of this analysis will directly impact the field of education as it will broaden the scope of understanding regarding how COVID- 19 impacted teaching and learning. The themes that will emerge from the data analysis will directly inform policy makers, administrators, and researchers about how to best implement training and curriculum design in order to support teacher effectiveness this in the classroom. Educational researchers have written about how teacher morale plummeted and how many teachers reported early burnout and higher stress levels. Teachers’ stress and anxiety soared during the COVID-19 pandemic, but so has their resilience and dedication to the field of education. This research aims to understand how public-school teachers overcame teaching obstacles presented to them during COVID-19. Research has been conducted to identify a variety of information regarding the impact the pandemic has had on K-12 teachers, students, and families. This research aims to understand how teachers continued to pursue their teaching objectives without significant training of effective online instruction methods. Not many educators even heard of the video conferencing platform Zoom before the spring of 2020. Researchers are interested in understanding how teachers used their expertise, prior knowledge, and training to institute immediate and effective online learning environments, what types of relationships did teachers build with students while teaching 100% remotely, and how did relationships change with students while teaching remotely? Furthermore, did the teacher-student relationship propel teacher resolve to be successful while teaching during a pandemic. Recent world events have significantly impacted the field of public-school teaching. The pandemic forced teachers to shift their paradigm about how to maintain high academic expectations, meet state curriculum standards, and assess students learning gains to make data-informed decisions while simultaneously adapting modes of instruction through multiple outlets with little to no training on remote, synchronous, asynchronous, virtual, and hybrid teaching. While it would be very interesting to study how teaching positively impacted students learning during the pandemic, I am more interested in understanding how teaches stayed the course and maintained their mental health while dealing with the stress and pressure of teaching during COVID-19.

Keywords: teacher retention, COVID-19, teacher education, teacher moral

Procedia PDF Downloads 87
3913 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 53
3912 From Research to Practice: Upcycling Cinema Icons

Authors: Mercedes Rodriguez Sanchez, Laura Luceño Casals

Abstract:

With the rise of social media, creative people and brands everywhere are constantly generating content. The students with Bachelor's Degrees in Fashion Design use platforms such as Instagram or TikTok to look for inspiration and entertainment, as well as a way to develop their own ideas and share them with a wide audience. Information and Communications Technologies (ICT) have become a central aspect of higher education, virtually affecting every aspect of the student experience. Following the current trend, during the first semester of the second year, a collaborative project across two subjects –Design Management and History of Fashion Design– was implemented. After an introductory class focused on the relationship between fashion and cinema, as well as a brief history of 20th-century fashion, the students freely chose a work team and an iconic look from a movie costume. They researched the selected movie and its sociocultural context, analyzed the costume and the work of the designer, and studied the style, fashion magazines and most popular films of the time. Students then redesigned and recreated the costume, for which they were compelled to recycle the materials they had available at home as an unavoidable requirement of the activity. Once completed the garment, students delivered in-class, team-based presentations supported by the final design, a project summary poster and a making-of video, which served as a documentation tool of the costume design process. The methodologies used include Challenge-Based Learning (CBL), debates, Internet research, application of Information and Communications Technologies, and viewing clips of classic films, among others. After finishing the projects, students were asked to complete two electronic surveys to measure the acquisition of transversal and specific competencies of each subject. Results reveal that this activity helped the students' knowledge acquisition, a deeper understanding of both subjects and their skills development. The classroom dynamic changed. The multidisciplinary approach encouraged students to collaborate with their peers, while educators were better able to keep students' interest and promote an engaging learning process. As a result, the activity discussed in this paper confirmed the research hypothesis: it is positive to propose innovative teaching projects that combine academic research with playful learning environments.

Keywords: cinema, cooperative learning, fashion design, higher education, upcycling

Procedia PDF Downloads 78
3911 Use of Visual, Animating Narrative in an Entrepreneurial Storytelling: A Case Study of Greenesignit! Card Game, Educational and Brainstorming Tool for Development of Sustainable Products

Authors: Maja S. Todorovic

Abstract:

This paper aims to promote entrepreneurial storytelling by exploring new ideas and learning practices. An entrepreneur needs to be a ‘storyteller’, an ‘epic hero’, capable of offering an emotional connection to his audience, a character with whom audience can identify with, rejoice, suffer, celebrate, fail – simply experience everything. In other words, a successful entrepreneur is giving tangible experience through his business story and that’s what makes his story and business alive. Use of mythology, eulogy, metaphor, epic, fairytales and cartoons, permeated with humor and sudden twists is a winning recipe for a business story that captures attention. In the business case of the Greenesignit! Card game, (educational and brainstorming tool for development of sustainable products) we will demonstrate how an entrepreneur successfully used visual narrative to communicate his story and at the same time as a vehicle to transmute his message in learning tool and product development.

Keywords: animating narrative, entrepreneur, Greeneisgnit! card game, visual storytelling

Procedia PDF Downloads 393
3910 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 148
3909 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy

Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann

Abstract:

Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.

Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats

Procedia PDF Downloads 368
3908 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers

Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin

Abstract:

Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.

Keywords: anxiety, emotional valence, childhood, lexical access

Procedia PDF Downloads 288
3907 The Impact of Gender and Residential Background on Racial Integration: Evidence from a South African University

Authors: Morolake Josephine Adeagbo

Abstract:

South Africa is one of those countries that openly rejected racism, and this is entrenched in its Bill of Rights. Despite the acceptance and incorporation of racial integration into the South Africa Constitution, the implementation within some sectors, most especially the educational sector, seems difficult. Recent occurrences of racism in some higher institutions of learning in South Africa are indications that racial integration / racial transformation is still farfetched in the country’s higher educational sector. It is against this background that this study was conducted to understand how gender and residential background influence racial integration in a South African university which was predominantly a white Afrikaner institution. Using a quantitative method to test the attitude of different categories of undergraduate students at the university, this study found that the factors- residential background and gender- used in measuring student’s attitude do not necessarily have a significant relationship towards racial integration. However, this study concludes with a call for more research with a range of other factors in order to better understand how racial integration can be promoted in South African institutions of higher learning.

Keywords: racial integration, gender, residential background, transformation

Procedia PDF Downloads 442
3906 Designing Teaching Aids for Dyslexia Students in Mathematics Multiplication

Authors: Mohini Mohamed, Nurul Huda Mas’od

Abstract:

This study was aimed at designing and developing an assistive mathematical teaching aid (courseware) in helping dyslexic students in learning multiplication. Computers and multimedia interactive courseware has benefits students in terms of increase learner’s motivation and engage them to stay on task in classroom. Most disability student has short attention span thus with the advantage offered by multimedia interactive courseware allows them to retain the learning process for longer period as compared to traditional chalk and talk method. This study was conducted in a public school at a primary level with the help of three special education teachers and six dyslexic students as participants. Qualitative methodology using interview with special education teachers and observations in classes were conducted. The development of the multimedia interactive courseware in this study was divided to three processes which were analysis and design, development and evaluation. The courseware was evaluated by using User Acceptance Survey Form and interview. Feedbacks from teachers were used to alter, correct and develop the application for a better multimedia interactive courseware.

Keywords: disability students, dyslexia, mathematics teaching aid, multimedia interactive courseware

Procedia PDF Downloads 404
3905 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
3904 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 364
3903 Cultural Snapshot: A Reflection on Project-Based Model of Cross-Cultural Understanding in Teaching and Learning

Authors: Kunto Nurcahyoko

Abstract:

The fundamental perception used in this study is that teaching and learning activities in Indonesian classroom have potentially generated individual’s sensitivity on cross-cultural understanding. This study aims at investigating Indonesian university students’ perception on cross-cultural understanding after doing Cultural Snapshot Project. The data was critically analyzed through multicultural ideology and diversity theories. The subjects were 30 EFL college students in one of colleges in Indonesia. Each student was assigned to capture a photo which depicted the existence of any cultural manifestation in their surrounding such as discrimination, prejudice and stereotype. Students were then requested asked to reflect on the picture by writing a short description on the picture and make an exhibition using their pictures. In the end of the project, students were instructed to fill in questionnaires to show their perception before and after the project. The result reveals that Cultural Snapshot Project has given the opportunity for the students to better realize cross-cultural understanding in their environment. In conclusion, the study shows that Cultural Snapshot Project has specifically enhanced students’ perception of multiculturalism in three major areas: cultural sensitivity and empathy, social tolerance, and understanding of diversity.

Keywords: cultural snapshot, cross-cultural understanding, students’ perception, multiculturalism

Procedia PDF Downloads 313
3902 The Impact of Social Emotional Learning and Conflict Resolution Skills

Authors: Paula Smith

Abstract:

During adolescence, many students engage in maladaptive behaviors that may reflect a lack of knowledge in social-emotional skills. Oftentimes these behaviors lead to conflicts and school-related disciplinary actions. Therefore, conflict resolution skills are vital for academic and social success. Conflict resolution is one component of a social-emotional learning (SEL) pedagogy that can effectively reduce discipline referrals and build students' social-emotional capacity. This action research study utilized a researcher-developed virtual SEL curriculum to provide instruction to eight adolescent students in an urban school in New York City with the goal of fostering their emotional intelligence (EI), reducing aggressive behaviors, and supporting instruction beyond the core academic content areas. Adolescent development, EI, and SEL frameworks were used to formulate this curriculum. Using a qualitative approach, this study inquired into how effectively participants responded to SEL instruction offered in virtual, Zoom-based workshops. Data included recorded workshop sessions, researcher field notes, and Zoom transcripts. Descriptive analysis involved manual coding/re-coding of transcripts to understand participants’ lived experience with conflict and the ideas presented in the workshops. Findings highlighted several themes and cultural norms that provided insight into adolescents' lived experiences and helped explain their past ideas about conflict. Findings also revealed participants' perspectives about the importance of SEL skills. This study illustrates one example of how evidence-based SEL programs might offer adolescents an opportunity to share their lived experiences. Programs such as this also address both individual and group needs, enabling practitioners to help students develop practical conflict resolution skills.

Keywords: social, emotional, learning, conflict, resolution

Procedia PDF Downloads 17
3901 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 87
3900 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 326
3899 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 307
3898 Human Capital Divergence and Team Performance: A Study of Major League Baseball Teams

Authors: Yu-Chen Wei

Abstract:

The relationship between organizational human capital and organizational effectiveness have been a common topic of interest to organization researchers. Much of this research has concluded that higher human capital can predict greater organizational outcomes. Whereas human capital research has traditionally focused on organizations, the current study turns to the team level human capital. In addition, there are no known empirical studies assessing the effect of human capital divergence on team performance. Team human capital refers to the sum of knowledge, ability, and experience embedded in team members. Team human capital divergence is defined as the variation of human capital within a team. This study is among the first to assess the role of human capital divergence as a moderator of the effect of team human capital on team performance. From the traditional perspective, team human capital represents the collective ability to solve problems and reducing operational risk of all team members. Hence, the higher team human capital, the higher the team performance. This study further employs social learning theory to explain the relationship between team human capital and team performance. According to this theory, the individuals will look for progress by way of learning from teammates in their teams. They expect to have upper human capital, in turn, to achieve high productivity, obtain great rewards and career success eventually. Therefore, the individual can have more chances to improve his or her capability by learning from peers of the team if the team members have higher average human capital. As a consequence, all team members can develop a quick and effective learning path in their work environment, and in turn enhance their knowledge, skill, and experience, leads to higher team performance. This is the first argument of this study. Furthermore, the current study argues that human capital divergence is negative to a team development. For the individuals with lower human capital in the team, they always feel the pressure from their outstanding colleagues. Under the pressure, they cannot give full play to their own jobs and lose more and more confidence. For the smart guys in the team, they are reluctant to be colleagues with the teammates who are not as intelligent as them. Besides, they may have lower motivation to move forward because they are prominent enough compared with their teammates. Therefore, human capital divergence will moderate the relationship between team human capital and team performance. These two arguments were tested in 510 team-seasons drawn from major league baseball (1998–2014). Results demonstrate that there is a positive relationship between team human capital and team performance which is consistent with previous research. In addition, the variation of human capital within a team weakens the above relationships. That is to say, an individual working with teammates who are comparable to them can produce better performance than working with people who are either too smart or too stupid to them.

Keywords: human capital divergence, team human capital, team performance, team level research

Procedia PDF Downloads 241
3897 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 78
3896 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
3895 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 90
3894 Self-Evaluation of the Foundation English Language Programme at the Center for Preparatory Studies Offered at the Sultan Qaboos University, Oman: Process and Findings

Authors: Meenalochana Inguva

Abstract:

The context: The Center for Preparatory study is one of the strongest and most vibrant academic teaching units of the Sultan Qaboos University (SQU). The Foundation Programme English Language (FPEL) is part of a larger foundation programme which was implemented at SQU in fall 2010. The programme has been designed to prepare the students who have been accepted to study in the university in order to achieve the required educational goals (the learning outcomes) that have been designed according to Oman Academic Standards and published by the Omani Authority for Academic Accreditation (OAAA) for the English language component. The curriculum: At the CPS, the English language curriculum is based on the learning outcomes drafted for each level. These learning outcomes guide the students in meeting what is expected of them by the end of each level. These six levels are progressive in nature and are seen as a continuum. The study: A periodic evaluation of language programmes is necessary to improve the quality of the programmes and to meet the set goals of the programmes. An evaluation may be carried out internally or externally depending on the purpose and context. A self-study programme was initiated at the beginning of spring semester 2015 with a team comprising a total of 11 members who worked with-in the assigned course areas (level and programme specific). Only areas specific to FPEL have been included in the study. The study was divided into smaller tasks and members focused on their assigned courses. The self-study primarily focused on analyzing the programme LOs, curriculum planning, materials used and their relevance against the GFP exit standards. The review team also reflected on the assessment methods and procedures followed to reflect on student learning. The team has paid attention to having standard criteria for assessment and transparency in procedures. A special attention was paid to the staging of LOs across levels to determine students’ language and study skills ability to cope with higher level courses. Findings: The findings showed that most of the LOs are met through the materials used for teaching. Students score low on objective tests and high on subjective tests. Motivated students take advantage of academic support activities others do not utilize the student support activities to their advantage. Reading should get more hours. In listening, the format of the listening materials in CT 2 does not match the test format. Some of the course materials need revision. For e.g. APA citation, referencing etc. No specific time is allotted for teaching grammar Conclusion: The findings resulted in taking actions in bridging gaps. It will also help the center to be better prepared for the external review of its FPEL curriculum. It will also provide a useful base to prepare for the self-study portfolio for GFP standards assessment and future audit.

Keywords: curriculum planning, learning outcomes, reflections, self-evaluation

Procedia PDF Downloads 226