Search results for: natural fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7144

Search results for: natural fuel

3694 Experimental Study on Dehumidification Performance of Supersonic Nozzle

Authors: Esam Jassim

Abstract:

Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.

Keywords: supersonic nozzle, dehumidification, particle separation, nozzle geometry

Procedia PDF Downloads 335
3693 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset

Authors: Assel Jaxylykova, Alexnder Pak

Abstract:

This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.

Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics

Procedia PDF Downloads 39
3692 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review

Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman

Abstract:

Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.

Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency

Procedia PDF Downloads 317
3691 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 191
3690 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 166
3689 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 36
3688 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 212
3687 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 126
3686 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: geogrid, reinforcement, stabilization, subgrade

Procedia PDF Downloads 315
3685 Enhancement of MIMO H₂S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H₂S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. The new design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: gas separator, gas sweetening, intelligent controller, fuzzy control

Procedia PDF Downloads 467
3684 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: HCI, icons, icon concreteness, icon recognition

Procedia PDF Downloads 254
3683 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.

Keywords: stress intensity factor (SIF), crack orientation, glass/epoxy, natural frequencies, X-FEM

Procedia PDF Downloads 510
3682 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 205
3681 Correlates of Income Generation of Small-Scale Fish Processors in Abeokuta Metropolis, Ogun State, Nigeria

Authors: Ayodeji Motunrayo Omoare

Abstract:

Economically fish provides an important source of food and income for both men and women especially many households in the developing world and fishing has an important social and cultural position in river-rine communities. However, fish is highly susceptible to deterioration. Consequently, this study was carried out to correlate income generation of small-scale women fish processors in Abeokuta metropolis, Ogun State, Nigeria. Eighty small-scale women fish processors were randomly selected from five communities as the sample size for this study. Collected data were analyzed using both descriptive and inferential statistics. The results showed that the mean age of the respondents was 31.75 years with average household size of 4 people while 47.5% of the respondents had primary education. Most (86.3%) of the respondents were married and had spent more than 11 years in fish processing. The respondents were predominantly Yoruba tribe (91.2%). Majority (71.3%) of the respondents used traditional kiln for processing their fish while 23.7% of the respondents used hot vegetable oil to fry their fish. Also, the result revealed that respondents sourced capital from Personal Savings (48.8%), Cooperatives (27.5%), Friends and Family (17.5%) and Microfinance Banks (6.2%) for fish processing activities. The respondents generated an average income of ₦7,000.00 from roasted fish, ₦3,500.00 from dried fish, and ₦5,200.00 from fried fish daily. However, inadequate processing equipment (95.0%), non-availability of credit facility from microfinance banks (85.0%), poor electricity supply (77.5%), inadequate extension service support (70.0%), and fuel scarcity (68.7%) were major constraints to fish processing in the study area. Results of chi-square analysis showed that there was a significant relationship between personal characteristics (χ2 = 36.83, df = 9), processing methods (χ2 = 15.88, df = 3) and income generated at p < 0.05 level of significance. It can be concluded that significant relationship existed between processing methods and income generated. The study, therefore, recommends that modern processing equipment should be made available to the respondents at a subsidized price by the agro-allied companies.

Keywords: correlates, income, fish processors, women, small-scale

Procedia PDF Downloads 241
3680 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms

Authors: Yaping Zhao, Yimin Zhang

Abstract:

In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.

Keywords: random vibration, cantilever beam, mean square response, white noise

Procedia PDF Downloads 381
3679 The Investigation and Analysis of Village Remains in Jinzhong Prefecture of Shanxi Province, China

Authors: Zhang Yu

Abstract:

Shanxi Province is a province with a long history in China. The historical characteristics of Jinzhong Prefecture in Shaanxi Province are very prominent. This research has done a lot of field research and analysis, and has analyzed a large number of documents. The formation and characteristics of villages in Jinzhong Prefecture are summarized. But the remains of many areas have not been systematically discovered and analyzed. This study found that the reasons for the formation of villages are natural, cultural, traffic and economic reasons. It mainly includes water, mountain, and developed business culture during the Ming and Qing Dynasties. By analyzing the evolution characteristics of each period, the characteristics and remains of the existing villages are explained in detail. These types of relics mainly include courtyards, fortresses, and Exchange shops. This study can provide systematic guidance on the protection of future village remains.

Keywords: Jinzhong Prefecture, village, features, remains

Procedia PDF Downloads 143
3678 Peer-Mediated Intervention for Social Communication Difficulties in Adolescents with Autism: Literature Review and Research Recommendations

Authors: Christine L. Cole

Abstract:

Adolescents with Autism Spectrum Disorders (ASD) often experience social-communication difficulties that negatively impact their social interactions with typical peers. However, unlike other age and disability groups, there is little intervention research to inform best practice for these students. One evidence-based strategy for younger students with ASD is peer-mediated intervention (PMI). PMI may be particularly promising for use with adolescents, as peers are readily available and natural experts for encouraging authentic high school conversations. This paper provides a review of previous research that evaluated the use of PMI to improve the social-communication skills of students with ASD. Specific intervention features associated with positive student outcomes are identified and recommendations for future research are provided. Adolescents with ASD are targeted due to the critical importance of social conversation at the high school level.

Keywords: autism, peer-mediation, social communication, adolescents

Procedia PDF Downloads 469
3677 Hydrographic Mapping Based on the Concept of Fluvial-Geomorphological Auto-Classification

Authors: Jesús Horacio, Alfredo Ollero, Víctor Bouzas-Blanco, Augusto Pérez-Alberti

Abstract:

Rivers have traditionally been classified, assessed and managed in terms of hydrological, chemical and / or biological criteria. Geomorphological classifications had in the past a secondary role, although proposals like River Styles Framework, Catchment Baseline Survey or Stroud Rural Sustainable Drainage Project did incorporate geomorphology for management decision-making. In recent years many studies have been attracted to the geomorphological component. The geomorphological processes and their associated forms determine the structure of a river system. Understanding these processes and forms is a critical component of the sustainable rehabilitation of aquatic ecosystems. The fluvial auto-classification approach suggests that a river is a self-built natural system, with processes and forms designed to effectively preserve their ecological function (hydrologic, sedimentological and biological regime). Fluvial systems are formed by a wide range of elements with multiple non-linear interactions on different spatial and temporal scales. Besides, the fluvial auto-classification concept is built using data from the river itself, so that each classification developed is peculiar to the river studied. The variables used in the classification are specific stream power and mean grain size. A discriminant analysis showed that these variables are the best characterized processes and forms. The statistical technique applied allows to get an individual discriminant equation for each geomorphological type. The geomorphological classification was developed using sites with high naturalness. Each site is a control point of high ecological and geomorphological quality. The changes in the conditions of the control points will be quickly recognizable, and easy to apply a right management measures to recover the geomorphological type. The study focused on Galicia (NW Spain) and the mapping was made analyzing 122 control points (sites) distributed over eight river basins. In sum, this study provides a method for fluvial geomorphological classification that works as an open and flexible tool underlying the fluvial auto-classification concept. The hydrographic mapping is the visual expression of the results, such that each river has a particular map according to its geomorphological characteristics. Each geomorphological type is represented by a particular type of hydraulic geometry (channel width, width-depth ratio, hydraulic radius, etc.). An alteration of this geometry is indicative of a geomorphological disturbance (whether natural or anthropogenic). Hydrographic mapping is also dynamic because its meaning changes if there is a modification in the specific stream power and/or the mean grain size, that is, in the value of their equations. The researcher has to check annually some of the control points. This procedure allows to monitor the geomorphology quality of the rivers and to see if there are any alterations. The maps are useful to researchers and managers, especially for conservation work and river restoration.

Keywords: fluvial auto-classification concept, mapping, geomorphology, river

Procedia PDF Downloads 364
3676 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources

Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu

Abstract:

A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.

Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast

Procedia PDF Downloads 160
3675 Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior

Authors: Mohammad Ehsani, Iman Zarei, Soudabeh Moazemigoudarzi

Abstract:

The aim of this study is to determine Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior. According to many researchers nature-based recreation activities play a significant role in the tourism industry and have provided myriad opportunities for the protection of natural areas. It is essential to investigate individuals' behavior during such activities to avoid further damage to precious and dwindling natural resources. This study develops a robust model that provides a comprehensive understanding of the formation of pro-environmental behavioral intentions among climbers of Mount Damavand National Park in Iran. To this end, we combined the theory of planned behavior (TPB), value-belief-norm theory (VBN), and a hierarchical model of leisure constraints to predict individuals’ pro-environmental hiking behavior during outdoor recreation. It was used structural equation modeling to test the theoretical framework. A sample of 787 climbers was analyzed. Among the theory of planned behavior variables, perceived behavioral control showed the strongest association with behavioral intention (β = .57). This relationship indicates that if people feel they can have fewer negative impacts on national resources while hiking, it will result in more environmentally acceptable behavior. Subjective norms had a moderate positive impact on behavioral intention, indicating the importance of other people on the individual's behavior. Attitude had a small positive effect on intention. Ecological worldview positively influenced attitude and personal belief. Personal belief (awareness of consequences and ascribed responsibility) showed a positive association with TPB variables. Although the data showed a high average score in awareness of consequences (mean = 4.219 out of 5), evidence from Damavand Mount shows that there are many environmental issues that need addressing (e.g., vast amounts of garbage). National park managers need to make sure that their solutions result in awareness about proenvironmental behavior (PEB). Findings showed that negative relationship between constraints and all TPB predictors. Providing proper restrooms and parking spaces in campgrounds, strategies controlling limiting capacity and solutions for removing waste from high altitudes are helpful to decrease the negative impact of structural constraints. In order to address intrapersonal constraints, managers should provide opportunities to interest individuals in environmental activities, such as environmental celebrations or making documentaries about environmental issues. Moreover, promoting a culture of environmental protection in the Damavand Mount area would reduce interpersonal constraints. Overall, the proposed model improved the explanatory power of the TPB by predicting 64.7% of intention compared to the original TPB that accounted for 63.8% of the variance in intention.

Keywords: theory of planned behavior, pro-environmental behavior, national park, constraints

Procedia PDF Downloads 93
3674 Sustainable Zero Carbon Communities: The Role of Community-Based Interventions in Reducing Carbon Footprint

Authors: Damilola Mofikoya

Abstract:

Developed countries account for a large proportion of greenhouse gas emissions. In the last decade, countries including the United States and China have made a commitment to cut down carbon emissions by signing the Paris Climate Agreement. However, carbon neutrality is a challenging issue to tackle at the country level because of the scale of the problem. To overcome this challenge, cities are at the forefront of these efforts. Many cities in the United States are taking strategic actions and proposing programs and initiatives focused on renewable energy, green transportation, less use of fossil fuel vehicles, etc. There have been concerns about the implications of those strategies and a lack of community engagement. This paper is focused on community-based efforts that help actualize the reduction of carbon footprint through sustained and inclusive action. Existing zero-carbon assessment tools are examined to understand variables and indicators associated with the zero-carbon goals. Based on a broad, systematic review of literature on community strategies, and existing zero-carbon assessment tools, a dashboard was developed to help simplify and demystify carbon neutrality goals at a community level. The literature was able to shed light on the key contributing factors responsible for the success of community efforts in carbon neutrality. Stakeholder education is discussed as one of the strategies to help communities take action and generate momentum. The community-based efforts involving individuals and residents, such as reduction of food wastages, shopping preferences, transit mode choices, and healthy diets, play an important role in the context of zero-carbon initiatives. The proposed community-based dashboard will emphasize the importance of sustained, structured, and collective efforts at a communal scale. Finally, the present study discusses the relationship between life expectancy and quality of life and how it affects carbon neutrality in communities.

Keywords: carbon footprint, communities, life expectancy, quality of life

Procedia PDF Downloads 83
3673 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 229
3672 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 458
3671 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 196
3670 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide

Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama

Abstract:

The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.

Keywords: carbon sphere, graphene oxide, reduction, layer by layer

Procedia PDF Downloads 137
3669 Pollution Associated with Combustion in Stove to Firewood (Eucalyptus) and Pellet (Radiate Pine): Effect of UVA Irradiation

Authors: Y. Vásquez, F. Reyes, P. Oyola, M. Rubio, J. Muñoz, E. Lissi

Abstract:

In several cities in Chile, there is significant urban pollution, particularly in Santiago and in cities in the south where biomass is used as fuel in heating and cooking in a large proportion of homes. This has generated interest in knowing what factors can be modulated to control the level of pollution. In this project was conditioned and set up a photochemical chamber (14m3) equipped with gas monitors e.g. CO, NOX, O3, others and PM monitors e.g. dustrack, DMPS, Harvard impactors, etc. This volume could be exposed to UVA lamps, producing a spectrum similar to that generated by the sun. In this chamber, PM and gas emissions associated with biomass burning were studied in the presence and absence of radiation. From the comparative analysis of wood stove (eucalyptus globulus) and pellet (radiata pine), it can be concluded that, in the first approximation, 9-nitroanthracene, 4-nitropyrene, levoglucosan, water soluble potassium and CO present characteristics of the tracers. However, some of them show properties that interfere with this possibility. For example, levoglucosan is decomposed by radiation. The 9-nitroanthracene, 4-nitropyrene are emitted and formed under radiation. The 9-nitroanthracene has a vapor pressure that involves a partition involving the gas phase and particulate matter. From this analysis, it can be concluded that K+ is compound that meets the properties known to be tracer. The PM2.5 emission measured in the automatic pellet stove that was used in this thesis project was two orders of magnitude smaller than that registered by the manual wood stove. This has led to encouraging the use of pellet stoves in indoor heating, particularly in south-central Chile. However, it should be considered, while the use of pellet is not without problems, due to pellet stove generate high concentrations of Nitro-HAP's (secondary organic contaminants). In particular, 4-nitropyrene, compound of high toxicity, also primary and secondary particulate matter, associated with pellet burning produce a decrease in the size distribution of the PM, which leads to a depth penetration of the particles and their toxic components in the respiratory system.

Keywords: biomass burning, photochemical chamber, particulate matter, tracers

Procedia PDF Downloads 191
3668 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 229
3667 Suitability of Class F Flyash for Construction Industry: An Indian Scenario

Authors: M. N. Akhtar, J. N. Akhtar

Abstract:

The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.

Keywords: fly ash, class F, class C, chemical, physical, SEM, EDS

Procedia PDF Downloads 177
3666 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 165
3665 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 266