Search results for: local raw materials
8392 Characterization of Sunflower Oil for Illustration of Its Components
Authors: Mehwish Shahzadi
Abstract:
Sunflower is cultivated all over the world not only as an ornament plant but also for the purpose of getting oil. It is the third most cultivated plant in the history because its oil considered best for health. The present study deals with the preparation of sunflower oil from commercial seed sample which was obtained from local market. The physicochemical properties of the oil were determined which included saponification value, acid value and ester value. Results showed that saponification value of the oil was 191.675, acid value was 0.64 and ester value to be 191.035 for the sample under observation. GC-MS analysis of sunflower oil was carried out to check its composition. Oleic acid was determined with linoleic acid and isopropyl palmitate. It represents the presence of three major components of sunflower oil. Other compounds detected were, p-toluylic acid, butylated hydroxytoluene, 1,2-benzenedicarboxylic acid, benzoic acid, 2,4,6-trimethyl-, 2,4,6-trimethylphenyl ester and 2,4-decadienal, (E,E).Keywords: GC-MS, oleic acid, saponification value, sunflower oil
Procedia PDF Downloads 3188391 Chebyshev Wavelets and Applications
Authors: Emanuel Guariglia
Abstract:
In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry.Keywords: Chebyshev wavelets, Fourier transform, connection coefficients, Taylor series, local fractional derivative, Cantor set
Procedia PDF Downloads 1238390 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow
Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya
Abstract:
Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.Keywords: acoustic metamaterials, noise, functional materials, ventilated
Procedia PDF Downloads 828389 Investigation of Mode II Fracture Toughness in Orthotropic Materials
Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi
Abstract:
Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM
Procedia PDF Downloads 3618388 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach
Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose
Abstract:
In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite
Procedia PDF Downloads 4478387 Summary of the Actual Conditions of SME Management Consultants
Authors: Takao Maeda, Tomofumi Tohara, Shigeaki Mishima
Abstract:
Focusing on the “SME management consultants” in Japan, this study intends (1) to clarify implications as to their self-actualization, motivation and (2) to revitalize SMEs, on which local economies depend. On the basis of these study purposes, the presenters conducted an interview survey of several SME management consultants and SME managers. This survey identified the current circumstances and challenges as follow: SME management consultants are high-level professionals who acquired very difficult national qualifications (examination pass rate 4%) to provide consultation and business analysis for SMEs. Nevertheless, only 20% of the qualified consultants run their business independently, while the rest (80%) are corporate employees as in-house consultants, the majority of whom belong to big companies. They acquired the qualification merely for the purpose of self-development. Therefore, they have few opportunities to demonstrate their expertise inside and outside their companies.On the other hand, the SMEs, which are to receive analysis and consultation from SME management consultants, constitute 99.7% of all industries, and are very important to local communities, for they sustain the economy and provide employment. SMEs used to be supported by the consultants in company management due to their scarce managerial resources compared with big companies. Nowadays, however, SMEs are regarded as the source of Japanese economic dynamism. To have the same degree of managerial skills as big companies, therefore, SMEs now need analysis and consultation by the consultants in more active ways, such as discovering and utilizing their dormant technologies. Partly because SME management consultants have not been fully utilized in Japan, the number of SMEs has been on a long-term downward trend since 1986. Utilizing expertise of the in-house consultants, who have rich experience in their big companies and deep knowledge regarding SMEs obtained through qualification, will potentially lead to revitalization of SMEs and consequently to economic growth in Japan. Through detailed analysis of the interview results, this study revealed short-term and long-term challenges regarding how to utilize SME management consultants. The most urgent issue is to study managerial approaches that will provide the consultants serving in big companies with more “opportunities to demonstrate their expertise.” The long-term issue is to enable the consultants to demonstrate their expertise in financial institutions, or financial supporter of SMEs, to examine farsighted and innovative financing strategy and criteria based on managers’ personalities and their business plans, instead of the conventional financing based on prompt fund collection.Keywords: small and medium enterprise(SME), SME managemant consultant, self-actualization, motivation
Procedia PDF Downloads 4088386 Analysis of Construction Waste Generation and Its Effect in a Construction Site
Authors: R. K. D. G. Kaluarachchi
Abstract:
The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.Keywords: construction-waste, effective management, reduce, reuse
Procedia PDF Downloads 2028385 Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation
Authors: Raana Babadi Fathipour
Abstract:
Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future.Keywords: antimicrobial edible film, biopolymer, antimicrobial agent, encapsulation, antimicrobial assay
Procedia PDF Downloads 598384 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain
Authors: Ganesh Dattatraya Saratale, Min Kyu Oh
Abstract:
Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation
Procedia PDF Downloads 5398383 Wheat Production and Market in Afghanistan
Authors: Fayiz Saifurahman, Noori Fida Mohammad
Abstract:
Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production.Keywords: Afghanistan, wheat, production , import
Procedia PDF Downloads 1688382 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 468381 Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp
Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz
Abstract:
Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.Keywords: brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle
Procedia PDF Downloads 1318380 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings
Authors: J. N. Nackler, K. Saleh Pascha, W. Winter
Abstract:
WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate
Procedia PDF Downloads 2198379 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience
Authors: Karen C. Olufokunbi, Odetunji A. Odejobi
Abstract:
The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics
Procedia PDF Downloads 1668378 Souk Waqif in Old Doha, Qatar: Cultural Heritage, Urban Regeneration, and Sustainability
Authors: Djamel Boussaa
Abstract:
Cultural heritage and tourism have become during the last two decades dynamic areas of development in the world. The idea of heritage is crucial to the critical decision-making process as to how irreplaceable resources are to be utilized by people of the present or conserved for future generations in a fast changing world. In view of the importance of ‘heritage’ to the development of a tourist destination the emphasis on developing appropriate adaptive reuse strategies cannot be overemphasized. In October 1999, the 12th general assembly of the ICOMOS in Mexico stated, that in the context of sustainable development, two interrelated issues need urgent attention, cultural tourism and historic towns and cities. These two issues underscore the fact that historic resources are non-renewable, belonging to all of humanity. Without adequate adaptive reuse actions to ensure a sustainable future for these historic resources, may lead to their complete vanishing. The growth of tourism and its role in dispersing cultural heritage to everyone is developing rapidly. According to the World Tourism Organization, natural and cultural heritage resources are and will remain motivating factors for travel in the foreseeable future. According to the experts, people choose travel destinations where they can learn about traditional and distinct cultures in their historic context. The Qatar rich urban heritage is now being recognized as a valuable resource for future development. This paper discusses the role of cultural heritage and tourism in regenerating Souk Waqif, and consequently the city of Doha. Therefore, in order to use cultural heritage wisely, it will be necessary to position heritage as an essential element of sustainable development, giving particular attention to cultural heritage and tourism. The research methodology is based on an empirical survey of the situation, based on several visits, meetings and interviews with the local heritage players. The rehabilitation project initiated since 2004 will be examined and assessed. Therefore, there is potential to assess the situation and propose directions for a sustainable future to this historic landmark. Conservation for the sake of conservation appears to be an outdated concept. Many irreplaceable natural and cultural sites are being compromised because local authorities are not giving economic consideration to the value of rehabilitating such sites. The question to be raised here is 'How can cultural heritage be used wisely for tourism without compromising its social sustainability within the emerging global world?'Keywords: cultural heritage, tourism, regeneration, economy, social sustainability
Procedia PDF Downloads 4218377 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material
Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah
Abstract:
The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure
Procedia PDF Downloads 988376 Sustainable Model of Outreach Eye Camps: A Case Study from Reputed Eye Hospital of Central India
Authors: Subramanyam Devarakonda Hanumantharao, Udayendu Prakash Sharma, Mahesh Garg
Abstract:
Introduction: Gomabai Netralaya a reputed eye hospital is located in Neemuch a small city of Madhya Pradesh, India. The hospital is established in 1992 by Late. G.D Agrawal a renowned educationist, freedom fighter and philanthropist. The eye hospital was established to serve all sections of the society in affordable manner. To provide comprehensive eye care services to the rural poor the hospital started organizing outreach camps since 1994. Purpose: To study the cost effectiveness of outreach eye camps for addressing the sustainability issues of the outreach program. Methods: One year statistics of outreach eye camps were collected from Hospital Management Information System software to analyze the productivity of camps. Income and expenses report was collected from outreach department records to analyze per camp expenses and per patient expenses against the income generated. All current year records were analyzed to have accuracy of information and results. Information was collected in two ways: 1)Actual camp performance records and expenses from book of accounts. 2)Cross verification was done through one to one discussion with outreach staff. Results: Total 17534 outpatients were examined through 52 outreach eye camps. Total 6042 (34% of total outpatients) patients were advised with cataracts and 4651 (77% of advice) operations were performed. The average OPD per camp was 337 and per camp 116 patients was advised for cataract surgery and 89 surgeries were performed per camp. Total 18200 US$ incurred on organizing 52 outreach camps in the radius of 100 k.ms. Considering the total outpatients screened through camps the screening cost per patient was 1.00 US$ and considering the surgical output the per surgery expenses was 4.00 US$. The cost recovery of the total expenses was through Government grant of US$ 16.00 per surgery (that includes surgical grant). All logistics cost of camps and patients transportation cost was taken care by local donors. Conclusion: The present study demonstrates that with people’s participation, successful high volume outreach eye camps can be organized. The cost effectiveness of the outreach camps is totally depended on volume of outpatient’s turn-up at camp site and per camp surgical output. The only solution to sustainability of outreach eye camps is sharing of cost with local donors and increasing productivity.Keywords: camps, outreach, productivity, sustainable
Procedia PDF Downloads 1718375 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 3988374 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning
Procedia PDF Downloads 1818373 Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength
Authors: M. Etezadi, A. Fahimifar
Abstract:
In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated.Keywords: tensile strength, brittle materials, direct and indirect tensile test, numerical modeling
Procedia PDF Downloads 5488372 Generation and Migration of Carbone Dioxide in the Lower Cretaceous Bahi Sandstone Reservoir Within the En Naga Sub-Basin, Sirte Basin, Libya
Authors: Moaawia Abdulgader Gdara
Abstract:
En Naga sub - basin considered the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub-basin has likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO₂ occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusives have been pierced in the subsurface and are exposed to the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO₂ exist in the Lower Cretaceous Bahi Sandstones in the En Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR). Based on the production tests for the drilled wells that make Lower Cretaceous Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near Concession 72 (En Naga sub-basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub-basin), three main developed structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represent a good example of the deep over-pressure potential in (the En Naga sub-basin). The very high pressures assumed to be associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from these facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO₂ as 98% overpressured. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure). A significant CO₂ gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment, which reflects better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large.Keywords: En Naga Sub Basin, Al Harouge Al Aswad, CO₂ generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone
Procedia PDF Downloads 38371 Acceleration of DNA Hybridization Using Electroosmotic Flow
Authors: Yun-Hsiang Wang, Huai-Yi Chen, Kin Fong Lei
Abstract:
Deoxyribonucleic acid (DNA) hybridization is a common technique used in genetic assay widely. However, the hybridization ratio and rate are usually limited by the diffusion effect. Here, microfluidic electrode platform producing electroosmosis generated by alternating current signal has been proposed to enhance the hybridization ratio and rate. The electrode was made of aurum fabricated by microfabrication technique. Thiol-modified oligo probe was immobilized on the electrode for specific capture of target, which is modified by fluorescent tag. Alternative electroosmosis can induce local microfluidic vortexes to accelerate DNA hybridization. This study provides a strategy to enhance the rate of DNA hybridization in the genetic assay.Keywords: DNA hybridization, electroosmosis, electrical enhancement, hybridization ratio
Procedia PDF Downloads 3838370 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials
Authors: Barry Hojjatie
Abstract:
Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.Keywords: ceramis, biaxial, flexure test, uniaxial
Procedia PDF Downloads 1558369 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 948368 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM
Authors: Lana Migla
Abstract:
Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.Keywords: energy performance, PCM containers, solar thermal cooling, storage tank
Procedia PDF Downloads 1408367 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices
Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das
Abstract:
The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.Keywords: terahertz, detector, responsivity, topological-semimetals
Procedia PDF Downloads 1618366 The Behavior of O3 and Its Nitrogen and Sulfur Precursors in Sea Breeze Scenarios on the Coast of Gabès (Tunisia)
Authors: Allagui Mohamed
Abstract:
The study of the concentrations of atmospheric pollutants is analyzed during two days of sea breeze (April 26, 2010, and January 11, 2008) on the Mediterranean coasts, just in front of Gabès (33 ° 53 'N, 10 ° 07' E), Tunisia. During these two cases, we found that Gabès was contaminated by a coastal sea breeze. On April 26, 2010, the terrestrial synoptic wind admitted a maximum speed of about 6 m / s and was approximately perpendicular to the coast and making the breeze easier. On January 11, 2008, the terrestrial wind was local. Under these conditions, O3 and, therefore, the concentrations were multiplied by the factors 0.1 and 2, respectively. The episodes of ozone concentrations faithfully follow the sea breeze circulation. These sea breeze events can be responsible for high concentrations of NO, NO2, and SO2 as air pollutants in this area.Keywords: sea breeze, O3, cost town, air quality
Procedia PDF Downloads 1048365 A Mixed Integer Linear Programming Model for Container Collection
Authors: J. Van Engeland, C. Lavigne, S. De Jaeger
Abstract:
In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.Keywords: container collection, crew scheduling, mixed integer linear programming, waste management
Procedia PDF Downloads 1348364 Study on Biodeterioration of Proteinous Objects in Museums and Toxic Efficacy of Myristica Fragrans and Syzygium Aromaticum Oils against the Larvae of Anthrenus verbasci
Authors: Fatma Faheem, K. Abduraheem
Abstract:
Museums are custodians of natural and cultural heritage. Objects like tribal dresses, headgears, weapons, musical instruments, manuscripts and other ethnocultural materials housed in museums are prized possessions of intellectual and cultural property of people. Tropical countries like India have a favorable climatic condition for biodeterioration. Organic materials such as leather and parchment objects which form a substantial part of natural history collections of museums across the world are promptly infested by insects like dermestid beetles, tenebrionides, silver fishes, cockroaches and other micro-organisms. The environmental problems caused due to the overuse of pesticides and other non-degradable chemicals have been the matter of serious concern for both the scientists and public in recent years. Synthetic pesticides are very expensive and also highly toxic for humans and its environment. Due to its high health risk factor government has taken severe initiatives on policy of banning it. In order to overcome the problems of biodeterioration, natural biocides should be applied. In this paper, comparative study has been done to investigate the toxic efficacy of Myristica fragrans and Syzygium aromaticum oil in variation with contact and stomach toxicity against larvae of Anthrenus verbasci.Keywords: biodeterioration, contact toxicity, cultural heritage, natural biocides, natural heritage, stomach toxicity
Procedia PDF Downloads 2458363 Design of the Ice Rink of the Future
Authors: Carine Muster, Prina Howald Erika
Abstract:
Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.Keywords: climate change, energy optimization, green building, sustainability
Procedia PDF Downloads 67