Search results for: bare machine computing
456 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling
Procedia PDF Downloads 158455 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting
Authors: D. O. Ramadan, R. S. Dwyer-Joyce
Abstract:
The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring
Procedia PDF Downloads 488454 An Econometric Analysis of the Flat Tax Revolution
Authors: Wayne Tarrant, Ethan Petersen
Abstract:
The concept of a flat tax goes back to at least the Biblical tithe. A progressive income tax was first vociferously espoused in a small, but famous, pamphlet in 1848 (although England had an emergency progressive tax for war costs prior to this). Within a few years many countries had adopted the progressive structure. The flat tax was only reinstated in some small countries and British protectorates until Mart Laar was elected Prime Minister of Estonia in 1992. Since Estonia’s adoption of the flat tax in 1993, many other formerly Communist countries have likewise abandoned progressive income taxes. Economists had expectations of what would happen when a flat tax was enacted, but very little work has been done on actually measuring the effect. With a testbed of 21 countries in this region that currently have a flat tax, much comparison is possible. Several countries have retained progressive taxes, giving an opportunity for contrast. There are also the cases of Czech Republic and Slovakia, which have adopted and later abandoned the flat tax. Further, with over 20 years’ worth of economic history in some flat tax countries, we can begin to do some serious longitudinal study. In this paper we consider many economic variables to determine if there are statistically significant differences from before to after the adoption of a flat tax. We consider unemployment rates, tax receipts, GDP growth, Gini coefficients, and market data where the data are available. Comparisons are made through the use of event studies and time series methods. The results are mixed, but we draw statistically significant conclusions about some effects. We also look at the different implementations of the flat tax. In some countries there are equal income and corporate tax rates. In others the income tax has a lower rate, while in others the reverse is true. Each of these sends a clear message to individuals and corporations. The policy makers surely have a desired effect in mind. We group countries with similar policies, try to determine if the intended effect actually occurred, and then report the results. This is a work in progress, and we welcome the suggestion of variables to consider. Further, some of the data from before the fall of the Iron Curtain are suspect. Since there are new ruling regimes in these countries, the methods of computing different statistical measures has changed. Although we first look at the raw data as reported, we also attempt to account for these changes. We show which data seem to be fictional and suggest ways to infer the needed statistics from other data. These results are reported beside those on the reported data. Since there is debate about taxation structure, this paper can help inform policymakers of change the flat tax has caused in other countries. The work shows some strengths and weaknesses of a flat tax structure. Moreover, it provides beginnings of a scientific analysis of the flat tax in practice rather than having discussion based solely upon theory and conjecture.Keywords: flat tax, financial markets, GDP, unemployment rate, Gini coefficient
Procedia PDF Downloads 341453 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors
Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller
Abstract:
In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault
Procedia PDF Downloads 53452 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 224451 A Descriptive Study to Assess the Knowledge Regarding Prevention and Management of Methicillin-Resistant Staphylococcus Aureus (MRSA) Infections Among Nursing Officers in a Selected Hospital, Bengaluru
Authors: Maneesha Pahlani, Najmin Sultana
Abstract:
A hospital is one of the most suitable places for acquiring an infection because it harbors a high population of virulent strains of microorganisms that may be resistant to antibiotics, especially the prevalence of Methicillin-Resistant Staphylococcus Aureus (MRSA) infections. The hospital-acquired infection has become a global challenge. In developed countries, healthcare-associated infections occur in 5-15% of hospitalized clients, affecting 9-37% of those admitted to intensive care units (ICU). A non-experimental descriptive study was conducted among 50 nursing officers working in a selected hospital in Bangalore to assess the nursing officers’ level of knowledge regarding the prevention and management of MRSA infections and to associate the pre-test knowledge mean scores of nursing officers with selected socio-demographic variables. Data was collected using a structured questionnaire consisting of socio-demographic data and a structured questionnaire on knowledge regarding the prevention and management of MRSA infections. The data was analyzed in terms of frequencies and percentages for the analysis of demographic variables and computing chi-square to determine the association between knowledge means scores and selected demographic variables. The study findings revealed that the nursing officer had an overall good level of knowledge (63.05%) regarding the prevention and management of MRSA infections, and there is no significant association found between the level of knowledge mean scores for prevention and management of MRSA infection with the selected socio-demographic variables. However, the categorization of knowledge items showed that the nursing officer must thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance for effective nursing care to patients with MRSA infections. The conclusions drawn from the study findings showed that it is necessary that the nursing officer thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance to provide effective nursing care to patients with MRSA infection as they constantly care for the patient who can be at risk for multi-drug resistance organisms to reduce the risk of MRSA infection in hospital care settings as well community settings.Keywords: MRSA, nursing officers, knowledge, preventive and management
Procedia PDF Downloads 69450 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 107449 Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards
Authors: S. P. Rana
Abstract:
Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level.Keywords: re-rolling mill, hazard, accident, health hazards
Procedia PDF Downloads 443448 A Descriptive Study to Assess the Knowledge Regarding Prevention and Management of Methicillin-Resistant Staphylococcus Aureus Infections Among Nursing Officers in a Selected Hospital, Bengaluru.
Authors: Najmin Sultana, Maneesha Pahlani
Abstract:
A hospital is one of the most suitable places for acquiring an infection because it harbors a high population of virulent strains of microorganisms that may be resistant to antibiotics, especially the prevalence of Methicillin-Resistant Staphylococcus Aureus (MRSA) infections. The hospital-acquired infection has become a global challenge. In developed countries, healthcare-associated infections occur in 5-15% of hospitalized clients, affecting 9-37% of those admitted to intensive care units (ICU). A non-experimental descriptive study was conducted among 50 nursing officers working in a selected hospital in bengaluru to assess the nursing officers’ level of knowledge regarding the prevention and management of MRSA infections and to associate the pre-test knowledge mean scores of nursing officers with selected socio-demographic variables. Data was collected using a structured questionnaire consisting of socio-demographic data and a structured questionnaire on knowledge regarding the prevention and management of MRSA infections. The data was analyzed in terms of frequencies and percentages for the analysis of demographic variables and computing chi-square to determine the association between knowledge means scores and selected demographic variables. The study findings revealed that the nursing officer had an overall good level of knowledge (63.05%) regarding the prevention and management of MRSA infections, and there is no significant association found between the level of knowledge mean scores for prevention and management of MRSA infection with the selected socio-demographic variables. However, the categorization of knowledge items showed that the nursing officer must thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance for effective nursing care to patients with MRSA infections. The conclusions drawn from the study findings showed that it is necessary that the nursing officer thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance to provide effective nursing care to patients with MRSA infection as they constantly care for the patient who can be at risk for multi-drug resistance organisms to reduce the risk of MRSA infection in hospital care settings as well community settings.Keywords: MRSA, knowledge, nursing officers', prevention and management
Procedia PDF Downloads 63447 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad
Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar
Abstract:
Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.Keywords: clinics, decontamination, management, medical waste
Procedia PDF Downloads 79446 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o
Procedia PDF Downloads 286445 Envisioning The Future of Language Learning: Virtual Reality, Mobile Learning and Computer-Assisted Language Learning
Authors: Jasmin Cowin, Amany Alkhayat
Abstract:
This paper will concentrate on a comparative analysis of both the advantages and limitations of using digital learning resources (DLRs). DLRs covered will be Virtual Reality (VR), Mobile Learning (M-learning) and Computer-Assisted Language Learning (CALL) together with their subset, Mobile Assisted Language Learning (MALL) in language education. In addition, best practices for language teaching and the application of established language teaching methodologies such as Communicative Language Teaching (CLT), the audio-lingual method, or community language learning will be explored. Education has changed dramatically since the eruption of the pandemic. Traditional face-to-face education was disrupted on a global scale. The rise of distance learning brought new digital tools to the forefront, especially web conferencing tools, digital storytelling apps, test authoring tools, and VR platforms. Language educators raced to vet, learn, and implement multiple technology resources suited for language acquisition. Yet, questions remain on how to harness new technologies, digital tools, and their ubiquitous availability while using established methods and methodologies in language learning paired with best teaching practices. In M-learning language, learners employ portable computing devices such as smartphones or tablets. CALL is a language teaching approach using computers and other technologies through presenting, reinforcing, and assessing language materials to be learned or to create environments where teachers and learners can meaningfully interact. In VR, a computer-generated simulation enables learner interaction with a 3D environment via screen, smartphone, or a head mounted display. Research supports that VR for language learning is effective in terms of exploration, communication, engagement, and motivation. Students are able to relate through role play activities, interact with 3D objects and activities such as field trips. VR lends itself to group language exercises in the classroom with target language practice in an immersive, virtual environment. Students, teachers, schools, language institutes, and institutions benefit from specialized support to help them acquire second language proficiency and content knowledge that builds on their cultural and linguistic assets. Through the purposeful application of different language methodologies and teaching approaches, language learners can not only make cultural and linguistic connections in DLRs but also practice grammar drills, play memory games or flourish in authentic settings.Keywords: language teaching methodologies, computer-assisted language learning, mobile learning, virtual reality
Procedia PDF Downloads 241444 Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India
Authors: S. P. Singh, Priya, Komal Sajwan
Abstract:
With the increasing spread of organic farming in India, costs, returns, efficiency, and social and environmental sustainability of organic vis-a-vis conventional farming systems have become topics of interest among agriculture scientists, economists, and policy analysts. A study on technical efficiency estimation under these farming systems, particularly in the Ganga River Basin, where the promotion of organic farming is incentivized, can help to understand whether the inputs are utilized to their maximum possible level and what measures can be taken to improve the efficiency. This paper, therefore, analyses the technical efficiency of wheat farms operating under organic and conventional farming systems. The study is based on a primary survey of 600 farms (300 organic ad 300 conventional) conducted in 2021 in two districts located in the Middle Ganga River Basin, India. Technical, managerial, and scale efficiencies of individual farms are estimated by applying the data envelopment analysis (DEA) methodology. The per hectare value of wheat production is taken as an output variable, and values of seeds, human labour, machine cost, plant nutrients, farm yard manure (FYM), plant protection, and irrigation charges are considered input variables for estimating the farm-level efficiencies. The post-DEA analysis is conducted using the Tobit regression model to know the efficiency determining factors. The results show that technical efficiency is significantly higher in conventional than organic farming systems due to a higher gap in scale efficiency than managerial efficiency. Further, 9.8% conventional and only 1.0% organic farms are found operating at the most productive scale size (MPSS), and 99% organic and 81% conventional farms at IRS. Organic farms perform well in managerial efficiency, but their technical efficiency is lower than conventional farms, mainly due to their relatively lower scale size. The paper suggests that technical efficiency in organic wheat can be increased by upscaling the farm size by incentivizing group/collective farming in clusters.Keywords: organic, conventional, technical efficiency, determinants, DEA, Tobit regression
Procedia PDF Downloads 101443 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 43442 Analysis of the Strategic Value at the Usage of Green IT Application for the Organizational Product or Service in Order to Gain the Competitive Advantage; Case: E-Money of a Telecommunication Firm in Indonesia
Authors: I Putu Deny Arthawan Sugih Prabowo, Eko Nugroho, Rudy Hartanto
Abstract:
Known, Green IT is a concept about how to use the technology (IT) wisely, efficiently, and environmentally. However, it exists as the consequence of the rapid-growth of the technology (especially IT) currently. Not only for the environments, the usage of Green IT applications, e.g. Cloud Computing (Cloud Storage) and E-Money (E-Cash), also gives its benefits for the organizational business strategy (especially the organizational product/service strategy) in order to gain the organizational competitive advantage (to be the market leader). This paper takes the case at E-Money as a Value-Added Services (VAS) of a telecommunication firm (company) in Indonesia which it also competes with the competitors’ similar product (service). Although it has been a popular telecommunication firm’s product/service, but its strategic values for the organization (firm) is still unknown, and therefore, the aim of this paper is for analyzing its strategic values for gaining the organizational competitive advantage. However, in this paper, its strategic value analysis is viewed by how to assess (consider) its strategic benefits and also manage the challenges or risks of its implementation at the organization as an organizational product/service. Then the paper uses a research model for investigating the influences of both perceived risks and the organizational cultures to the usage of Green IT Application at the organization and also both the usage of Green IT Application at the organization and the threats-challenges of the organizational products/services to the competitive advantage of the organizational products/services. However, the paper uses the quantitative research method (collecting the information from the field respondents by using the research questionnaires) and then, the primary data is analyzed by both descriptive and inferential statistics. Also in this paper, SmartPLS is used for analyzing the primary data by the quantitative research method. Besides using the quantitative research method, the paper also uses the qualitative research method, such as interviewing the field respondent and/or directly field observation, for deeply confirming the quantitative research method’s analysis results at the certain domain, e.g. both organizational cultures and internal processes that support the usage of Green IT applications for the organizational product/service (E-Money in this paper case). However, the paper is still at an infant stage of in-progress research. Then the paper’s results may be used as a reference for the organization (firm or company) in developing the organizational business strategies, especially about the organizational product/service that relates to Green IT applications. Besides it, the paper may also be the future study, e.g. the influence of knowledge transfer about E-Money and/or other Green IT application-based products/services to the organizational service performance that relates to the product (service) in order to gain the competitive advantage.Keywords: Green IT, competitive advantage, strategic value, organization (firm or company), organizational product (service)
Procedia PDF Downloads 307441 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses
Authors: Neil Bar, Andrew Heweston
Abstract:
Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.Keywords: probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability
Procedia PDF Downloads 208440 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder
Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo
Abstract:
Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion
Procedia PDF Downloads 122439 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator
Procedia PDF Downloads 226438 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 99437 Pareto Optimal Material Allocation Mechanism
Authors: Peter Egri, Tamas Kis
Abstract:
Scheduling problems have been studied by the algorithmic mechanism design research from the beginning. This paper is focusing on a practically important, but theoretically rather neglected field: the project scheduling problem where the jobs connected by precedence constraints compete for various nonrenewable resources, such as materials. Although the centralized problem can be solved in polynomial-time by applying the algorithm of Carlier and Rinnooy Kan from the Eighties, obtaining materials in a decentralized environment is usually far from optimal. It can be observed in practical production scheduling situations that project managers tend to cache the required materials as soon as possible in order to avoid later delays due to material shortages. This greedy practice usually leads both to excess stocks for some projects and materials, and simultaneously, to shortages for others. The aim of this study is to develop a model for the material allocation problem of a production plant, where a central decision maker—the inventory—should assign the resources arriving at different points in time to the jobs. Since the actual due dates are not known by the inventory, the mechanism design approach is applied with the projects as the self-interested agents. The goal of the mechanism is to elicit the required information and allocate the available materials such that it minimizes the maximal tardiness among the projects. It is assumed that except the due dates, the inventory is familiar with every other parameters of the problem. A further requirement is that due to practical considerations monetary transfer is not allowed. Therefore a mechanism without money is sought which excludes some widely applied solutions such as the Vickrey–Clarke–Groves scheme. In this work, a type of Serial Dictatorship Mechanism (SDM) is presented for the studied problem, including a polynomial-time algorithm for computing the material allocation. The resulted mechanism is both truthful and Pareto optimal. Thus the randomization over the possible priority orderings of the projects results in a universally truthful and Pareto optimal randomized mechanism. However, it is shown that in contrast to problems like the many-to-many matching market, not every Pareto optimal solution can be generated with an SDM. In addition, no performance guarantee can be given compared to the optimal solution, therefore this approximation characteristic is investigated with experimental study. All in all, the current work studies a practically relevant scheduling problem and presents a novel truthful material allocation mechanism which eliminates the potential benefit of the greedy behavior that negatively influences the outcome. The resulted allocation is also shown to be Pareto optimal, which is the most widely used criteria describing a necessary condition for a reasonable solution.Keywords: material allocation, mechanism without money, polynomial-time mechanism, project scheduling
Procedia PDF Downloads 333436 Human Factors Interventions for Risk and Reliability Management of Defence Systems
Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan
Abstract:
Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.Keywords: defence systems, reliability, risk, safety
Procedia PDF Downloads 136435 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites
Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi
Abstract:
Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging
Procedia PDF Downloads 355434 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 91433 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 92432 Big Data Analytics and Public Policy: A Study in Rural India
Authors: Vasantha Gouri Prathapagiri
Abstract:
Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.Keywords: Digital India Mission, public service delivery system, public policy, Indian administration
Procedia PDF Downloads 160431 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy
Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha
Abstract:
In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA
Procedia PDF Downloads 154430 The Role of Home Composting in Waste Management Cost Reduction
Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti
Abstract:
Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.Keywords: compost, home compost, reducing waste, waste management
Procedia PDF Downloads 429429 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.Keywords: censored data, R statistical software, reliability analysis, time to failure
Procedia PDF Downloads 401428 Development of a Microfluidic Device for Low-Volume Sample Lysis
Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
Abstract:
We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet
Procedia PDF Downloads 79427 Consumption and Diffusion Based Model of Tissue Organoid Development
Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov
Abstract:
In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid
Procedia PDF Downloads 308