Search results for: artificial intelligence and genetic algorithms
2230 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 4302229 An Overview of New Era in Food Science and Technology
Authors: Raana Babadi Fathipour
Abstract:
Strict prerequisites of logical diaries united ought to demonstrate the exploratory information is (in)significant from the statistical point of view and has driven a soak increment within the utilization and advancement of the factual program. It is essential that the utilization of numerical and measurable strategies, counting chemometrics and many other factual methods/algorithms in nourishment science and innovation has expanded steeply within the final 20 a long time. Computational apparatuses accessible can be utilized not as it were to run factual investigations such as univariate and bivariate tests as well as multivariate calibration and improvement of complex models but also to run reenactments of distinctive scenarios considering a set of inputs or essentially making expectations for particular information sets or conditions. Conducting a fast look within the most legitimate logical databases (Pubmed, ScienceDirect, Scopus), it is conceivable to watch that measurable strategies have picked up a colossal space in numerous regions.Keywords: food science, food technology, food safety, computational tools
Procedia PDF Downloads 672228 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 752227 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments
Authors: L. Mouzai, M. Bouhadef
Abstract:
Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity
Procedia PDF Downloads 1642226 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement
Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad
Abstract:
An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter
Procedia PDF Downloads 3992225 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 1362224 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 2632223 Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel
Authors: Kok-Chong Yong
Abstract:
Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel.Keywords: conductive rubber, nitrile rubber, polyaniline, carbon steel, corrosion inhibition
Procedia PDF Downloads 4602222 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 3022221 Assessing Acute Toxicity and Endocrine Disruption Potential of Selected Packages Internal Layers Extracts
Authors: N. Szczepanska, B. Kudlak, G. Yotova, S. Tsakovski, J. Namiesnik
Abstract:
In the scientific literature related to the widely understood issue of packaging materials designed to have contact with food (food contact materials), there is much information on raw materials used for their production, as well as their physiochemical properties, types, and parameters. However, not much attention is given to the issues concerning migration of toxic substances from packaging and its actual influence on the health of the final consumer, even though health protection and food safety are the priority tasks. The goal of this study was to estimate the impact of particular foodstuff packaging type, food production, and storage conditions on the degree of leaching of potentially toxic compounds and endocrine disruptors to foodstuffs using the acute toxicity test Microtox and XenoScreen YES YAS assay. The selected foodstuff packaging materials were metal cans used for fish storage and tetrapak. Five stimulants respectful to specific kinds of food were chosen in order to assess global migration: distilled water for aqueous foods with a pH above 4.5; acetic acid at 3% in distilled water for acidic aqueous food with pH below 4.5; ethanol at 5% for any food that may contain alcohol; dimethyl sulfoxide (DMSO) and artificial saliva were used in regard to the possibility of using it as an simulation medium. For each packaging three independent variables (temperature and contact time) factorial design simulant was performed. Xenobiotics migration from epoxy resins was studied at three different temperatures (25°C, 65°C, and 121°C) and extraction time of 12h, 48h and 2 weeks. Such experimental design leads to 9 experiments for each food simulant as conditions for each experiment are obtained by combination of temperature and contact time levels. Each experiment was run in triplicate for acute toxicity and in duplicate for estrogen disruption potential determination. Multi-factor analysis of variation (MANOVA) was used to evaluate the effects of the three main factors solvent, temperature (temperature regime for cup), contact time and their interactions on the respected dependent variable (acute toxicity or estrogen disruption potential). From all stimulants studied the most toxic were can and tetrapak lining acetic acid extracts that are indication for significant migration of toxic compounds. This migration increased with increase of contact time and temperature and justified the hypothesis that food products with low pH values cause significant damage internal resin filling. Can lining extracts of all simulation medias excluding distilled water and artificial saliva proved to contain androgen agonists even at 25°C and extraction time of 12h. For tetrapak extracts significant endocrine potential for acetic acid, DMSO and saliva were detected.Keywords: food packaging, extraction, migration, toxicity, biotest
Procedia PDF Downloads 1812220 A New Computational Package for Using in CFD and Other Problems (Third Edition)
Authors: Mohammad Reza Akhavan Khaleghi
Abstract:
This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis
Procedia PDF Downloads 1182219 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network
Procedia PDF Downloads 4352218 Phylogenetic Analysis and a Review of the History of the Accidental Phytoplankter, Phaeodactylum tricornutum Bohlin (Bacillariophyta)
Authors: Jamal S. M. Sabir, Edward C. Theriot, Schonna R. Manning, Abdulrahman L. Al-Malki, Mohammad, Mumdooh J. Sabir, Dwight K. Romanovicz, Nahid H. Hajrah, Robert K. Jansen, Matt P. Ashworth
Abstract:
The diatom Phaeodactylum tricornutum has been used as a model for cell biologists and ecologists for over a century. We have incorporated several new raphid pennates into a three-gene phylogenetic dataset (SSU, rbcL, psbC), and recover Gomphonemopsis sp. as sister to P. tricornutum with 100% BS support. This is the first time a close relative has been identified for P. tricornutum with robust statistical support. We test and reject a succession of hypotheses for other relatives. Our molecular data are statistically significantly incongruent with placement of either or both species among the Cymbellales, an order of diatoms with which both have been associated. We believe that further resolution of the phylogenetic position of P. tricornutum will rely more on increased taxon sampling than increased genetic sampling. Gomphonemopsis is a benthic diatom, and its phylogenetic relationship with P. tricornutum is congruent with the hypothesis that P. tricornutum is a benthic diatom with specific adaptations that lead to active recruitment into the plankton. We hypothesize that other benthic diatoms are likely to have similar adaptations and are not merely passively recruited into the plankton.Keywords: benthic, diatoms; ecology, Phaeodactylum tricornutum, phylogeny, tychoplankton
Procedia PDF Downloads 2382217 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems
Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe
Abstract:
The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.Keywords: non-linear systems, fuzzy set Models, neural network, control law
Procedia PDF Downloads 2122216 A Quantitative Analysis of Rural to Urban Migration in Morocco
Authors: Donald Wright
Abstract:
The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.Keywords: climate change, machine learning, migration, Morocco, urban development
Procedia PDF Downloads 1502215 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks
Authors: Ameen Jameel Alawneh
Abstract:
A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets
Procedia PDF Downloads 3912214 Disease Characteristics of Neurofibromatosis Type II and Cochlear Implantation
Authors: Boxiang Zhuang
Abstract:
This study analyzes the clinical manifestations, hearing rehabilitation methods and outcomes of a complex case of neurofibromatosis type II (NF2). Methods: The clinical manifestations, medical history, clinical data, surgical methods and postoperative hearing rehabilitation outcomes of an NF2 patient were analyzed to determine the hearing reconstruction method and postoperative effect for a special type of NF2 acoustic neuroma. Results: The patient had bilateral acoustic neuromas with profound sensorineural hearing loss in both ears. Peripheral blood genetic testing did not reveal pathogenic gene mutations, suggesting mosaicism. The patient had an intracochlear schwannoma in the right ear and severely impaired vision in both eyes. Cochlear implantation with tumor retention was performed in the right ear. After 2 months of family-based auditory and speech rehabilitation, the Categories of Auditory Performance (CAP) score improved from 0 to 5. Conclusion: NF2 has complex clinical manifestations and poor prognosis. For NF2 patients with intracochlear tumors, cochlear implantation with tumor retention can be used to reconstruct hearing.Keywords: NF2, intracochlear schwannoma, hearing reconstruction, cochlear implantation
Procedia PDF Downloads 132213 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic
Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar
Abstract:
Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement
Procedia PDF Downloads 822212 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking
Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye
Abstract:
The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.Keywords: algorithm, cryptography, cryptosystem, network
Procedia PDF Downloads 3492211 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls
Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.Keywords: android, information security, intrusion detection systems, malware, mobile devices
Procedia PDF Downloads 3042210 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 1632209 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1682208 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems
Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira
Abstract:
Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.Keywords: particle swarm optimization, migration, variable neighborhood search, multiobjective optimization
Procedia PDF Downloads 1672207 Characterization of Leakage Current on the Surface of Porcelain Insulator under Contaminated Conditions
Authors: Hocine Terrab , Abdelhafid Bayadi, Adel Kara, Ayman El-Hag
Abstract:
Insulator flashover under polluted conditions has been a serious threat on the reliability of power systems. It is known that the flashover process is mainly affected by the environmental conditions such as; the pollution level and humidity. Those are the essential parameters influencing the wetting process. This paper presents an investigation of the characteristics of leakage current (LC) developed on the surface of porcelain insulator at contaminated conditions under AC voltage. The study is done in an artificial fog chamber and the LC is characterized for different stages; dry, wetted and presence of discharge activities. Time-frequency and spectral analysis are adopted to calculate the evolution of LC characteristics with various stages prior to flashover occurrence. The preliminary results could be used in analysing the LC to develop more effective diagnosis of early signs of dry band arcing as an indication for insulation washing.Keywords: flashover, harmonic components, leakage current, phase angle, statistical analysis
Procedia PDF Downloads 4322206 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 4852205 Parallelization by Domain Decomposition for 1-D Sugarcane Equation with Message Passing Interface
Authors: Ewedafe Simon Uzezi
Abstract:
In this paper we presented a method based on Domain Decomposition (DD) for parallelization of 1-D Sugarcane Equation on parallel platform with parallel paradigms on Master-Slave platform using Message Passing Interface (MPI). The 1-D Sugarcane Equation was discretized using explicit method of discretization requiring evaluation nof temporal and spatial distribution of temperature. This platform gives better predictions of the effects of temperature distribution of the sugarcane problem. This work presented parallel overheads with overlapping communication and communication across parallel computers with numerical results across different block sizes with scalability. However, performance improvement strategies from the DD on various mesh sizes were compared experimentally and parallel results show speedup and efficiency for the parallel algorithms design.Keywords: sugarcane, parallelization, explicit method, domain decomposition, MPI
Procedia PDF Downloads 212204 Load Balancing Algorithms for SIP Server Clusters in Cloud Computing
Authors: Tanmay Raj, Vedika Gupta
Abstract:
For its groundbreaking and substantial power, cloud computing is today’s most popular breakthrough. It is a sort of Internet-based computing that allows users to request and receive numerous services in a cost-effective manner. Virtualization, grid computing, and utility computing are the most widely employed emerging technologies in cloud computing, making it the most powerful. However, cloud computing still has a number of key challenges, such as security, load balancing, and non-critical failure adaption, to name a few. The massive growth of cloud computing will put an undue strain on servers. As a result, network performance will deteriorate. A good load balancing adjustment can make cloud computing more productive and in- crease client fulfillment execution. Load balancing is an important part of cloud computing because it prevents certain nodes from being overwhelmed while others are idle or have little work to perform. Response time, cost, throughput, performance, and resource usage are all parameters that may be improved using load balancing.Keywords: cloud computing, load balancing, computing, SIP server clusters
Procedia PDF Downloads 1232203 Determination of the Presence of Antibiotic Resistance from Vibrio Species in Northern Italy
Authors: Tramuta Clara, Masotti Chiara, Pitti Monica, Adriano Daniela, Battistini Roberta, Serraca Laura, Decastelli Lucia
Abstract:
Oysters are considered filter organisms, and their raw consumption may increase health risks for consumers: it is often associated with outbreaks of gastroenteritis or enteric illnesses. Most of these foodborne diseases are caused by Vibrio strains, enteric pathogens also involved in the diffusion of genetic determinants of antibiotic resistance and their entrance along the food chain. The European Food Safety Authority (EFSA), during the European Union report on antimicrobial resistance in 2017, focused the attention about the role of food as a possible carrier of antibiotic-resistant bacteria or antibiotic-resistance genes that determine health risks for humans. This study wants to determine antibiotic resistance and antibiotic-resistance genes in Vibrio spp. isolated from Crassostrea gigas oysters collected in the Golfo della Spezia (Liguria, Italy). A total of 47 Vibrio spp. strains were isolated (ISO21872-2:2017) during the summer of 2021 from oysters of Crassostrea gigas. The strains were identified by MALDI-TOF (Bruker, Germany) mass spectrometry and tested for antibiotic susceptibility using a broth microdiluition method (ISO20776-1:2019) using Sensititre EUVSEC plates (Thermo-Fisher Scientific) to obtain the Minimum Inhibitory Concentration (MIC). The strains were tested with PCR-based biomolecular methods, according to previous works, to define the presence of 23 resistance genes of the main classes of antibiotics used in human and veterinary medicine: tet (B), tet (C), tet (D), tet (A), tet (E), tet (G ), tet (K), tet (L), tet (M), tet (O), tet (S) (tetracycline resistance); blaCTX-M, blaTEM, blaOXA, blaSHV (β-lactam resistance); mcr-1 and mcr-2 (colistin resistance); qnrA, qnrB, and qnrS (quinolone resistance); sul1, sul2 and sul3 (sulfonamide resistance). Six different species have been identified: V. alginolyticus 34% (n=16), V. harveyi 28% (n=13), V. fortis 15% (n=7), V. pelagius 8% (n=4), V. parahaemolyticus 11% (n=5) e V. chagasii 4% (n=2). The PCR assays showed the presence of the blaTEM gene on 40% of the strains (n=19). All the other genes were not detected, except for a V. alginolyticus positive for anrS gene. The broth microdiluition method results showed an high level of resistance for ciprofloxacin (62%; n=29), ampicillin (47%; n=22), and colistin (49%; n=23). Furthermore, 32% (n=15) of strains can be considered multiresistant bacteria for the simultaneous presence of resistance for three different antibiotic classes. Susceptibility towards meropenem, azithromycin, gentamicin, ceftazidime, cefotaxime, chloramphenicol, tetracycline and sulphamethoxazole reached 100%. The Vibrio species identified in this study are widespread in marine environments and can cause gastrointerstinal infections after the ingestion of raw fish products and bivalve molluscs. The level of resistance to antibiotics such as ampicillin, ciprofloxacin and colistin can be connected to anthropic factors (industrial, agricultural and domestic wastes) that promote the spread of resistance to these antibiotics. It can be also observed a strong correlation between phenotypic (resistant MIC) and genotypic (positive blaTEM gene) resistance for ampicillin on the same strains, probably due to the transfer of genetic material between bacterial strains. Consumption of raw bivalve molluscs can represent a risk for consumers heath due to the potentially presence of foodborne pathogens, highly resistant to different antibiotics and source of transferable antibiotic-resistant genes.Keywords: vibrio species, blaTEM genes, antimicrobial resistance, PCR
Procedia PDF Downloads 762202 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms
Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi
Abstract:
In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.
Keywords: time history analysis, wavelet transform, optimization, earthquake
Procedia PDF Downloads 2342201 Modelling Railway Noise Over Large Areas, Assisted by GIS
Authors: Conrad Weber
Abstract:
The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.Keywords: noise, modeling, GIS, rail
Procedia PDF Downloads 122