Search results for: methodical framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5129

Search results for: methodical framework

1709 Query in Grammatical Forms and Corpus Error Analysis

Authors: Katerina Florou

Abstract:

Two decades after coined the term "learner corpora" as collections of texts created by foreign or second language learners across various language contexts, and some years following suggestion to incorporate "focusing on form" within a Task-Based Learning framework, this study aims to explore how learner corpora, whether annotated with errors or not, can facilitate a focus on form in an educational setting. Argues that analyzing linguistic form serves the purpose of enabling students to delve into language and gain an understanding of different facets of the foreign language. This same objective is applicable when analyzing learner corpora marked with errors or in their raw state, but in this scenario, the emphasis lies on identifying incorrect forms. Teachers should aim to address errors or gaps in the students' second language knowledge while they engage in a task. Building on this recommendation, we compared the written output of two student groups: the first group (G1) employed the focusing on form phase by studying a specific aspect of the Italian language, namely the past participle, through examples from native speakers and grammar rules; the second group (G2) focused on form by scrutinizing their own errors and comparing them with analogous examples from a native speaker corpus. In order to test our hypothesis, we created four learner corpora. The initial two were generated during the task phase, with one representing each group of students, while the remaining two were produced as a follow-up activity at the end of the lesson. The results of the first comparison indicated that students' exposure to their own errors can enhance their grasp of a grammatical element. The study is in its second stage and more results are to be announced.

Keywords: Corpus interlanguage analysis, task based learning, Italian language as F1, learner corpora

Procedia PDF Downloads 53
1708 Energy Transition and Investor-State Disputes: Scientific Knowledge as a Solution to the Burden for Climate Policy-Making

Authors: Marina E. Konstantinidi

Abstract:

It is now well-established that the fight against climate change and its consequences, which are a threat to mankind and to life on the planet Earth, requires that global temperature rise be kept under 1,5°C. It is also well-established that this requires humanity to put an end to the use of fossil fuels in the next decades, at the latest. However, investors in the fossil energy sector have brought or threatened to bring investment arbitration claims against States which put an end to their activity for the purpose of reaching their climate change policies’ objectives. Examples of such claims are provided by the cases of WMH v. Canada, Lone Pine v. Canada, Uniper v. Netherlands and RWE v. Netherlands. Irrespective of the outcome of the arbitration proceedings, the risk of being ordered to pay very substantial damages may have a ‘chilling effect’ on States, meaning that they may hesitate to implement the energy transition measures needed to fight climate change and its consequences. Although mitigation action is a relatively recent phenomenon, knowledge about the negative impact of fossil fuels has existed for a long time ago. In this paper, it is argued that structured documentation of evidence of knowledge about climate change may influence the adjudication of investment treaty claims and, consequently, affect the content of energy transition regulations that will be implemented. For example, as concerns investors, evidence that change in the regulatory framework towards environmental protection could have been predicted would refute the argument concerning legitimate expectations for legislative stability. By reference to relevant case law, it attempted to explore how pre-existing knowledge about climate change can be used in the adjudication of investor-State disputes and resulting from green energy transition policies.

Keywords: climate change, energy transition, international investment law, knowledge

Procedia PDF Downloads 99
1707 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 79
1706 Mapping the Technological Interventions to the National Action Plan for Marine Litter Management 2018-2025: Addressing the Marine Plastic Litter at the Marine Tourism Destinations in Indonesia

Authors: Kaisar Akhir, Azhar Slamet

Abstract:

This study aims to provide recommendations for addressing marine plastic litter at the ocean tourism destinations in Indonesia sustainably through technological interventions in the framework of the National Action Plan for Marine Litter Management 2018-2025. In Indonesia, marine tourism is a rapidly growing economic sector. However, marine tourism destinations are facing a global challenge called marine plastic litter. Marine plastic litter is a threat to those destinations since it has potential impacts on the reduction of marine environmental sustainability, the health of tourists and local communities as well as tourism business income. Since 2018, the Indonesian government has passed and promulgated the National Plan of Action on Marine Litter Management 2018-2025. This national action plan consists of three important key aspects of interventions (i.e., societal effort, technological application, and institutional coordination) and five strategies for addressing marine litter in Indonesia, in particular, to address 70% of marine plastic litter by 2025. The strategies include 1) National movement for raising awareness of stakeholders, 2) Land-based litter management, 3) Litter management at the sea and coasts, 4) Funding mechanism, institutional strengthening, monitoring, and law enforcement, and 5) Research and development. In this study, technological interventions around the world and in Indonesia are reviewed and analyzed on their relevance to the national action plan based on five criteria. As a result, there are twelve kinds of technological interventions recommended to be implemented for addressing marine plastic litter in the marine tourism destinations in Indonesia.

Keywords: marine litter management, marine plastic litter, national action plan, ocean sustainability, ocean tourism destination, technological interventions

Procedia PDF Downloads 168
1705 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective

Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar

Abstract:

There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.

Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts

Procedia PDF Downloads 114
1704 The Role of Blended Modality in Enhancing Active Learning Strategies in Higher Education: A Case Study of a Hybrid Course of Oral Production and Listening of French

Authors: Tharwat N. Hijjawi

Abstract:

Learning oral skills in an Arabic speaking environment is challenging. A blended course (material, activities, and individual/ group work tasks …) was implemented in a module of level B1 for undergraduate students of French as a foreign language in order to increase their opportunities to practice listening and speaking skills. This research investigates the influence of this modality on enhancing active learning and examines the effectiveness of provided strategies. Moreover, it aims at discovering how it allows teacher to flip the traditional classroom and create a learner-centered framework. Which approaches were integrated to motivate students and urge them to search, analyze, criticize, create and accomplish projects? What was the perception of students? This paper is based on the qualitative findings of a questionnaire and a focus group interview with learners. Despite the doubled time and effort both “teacher” and “student” needed, results revealed that the NTIC allowed a shift into a learning paradigm where learners were the “chiefs” of the process. Tasks and collaborative projects required higher intellectual capacities from them. Learners appreciated this experience and developed new life-long learning competencies at many levels: social, affective, ethical and cognitive. To conclude, they defined themselves as motivated young researchers, motivators and critical thinkers.

Keywords: active learning, critical thinking, inverted classroom, learning paradigm, problem-based

Procedia PDF Downloads 268
1703 Ethical Implications of Gaps in the Implementation Process of the Circular Economy: Special Focus on Underdeveloped Countries

Authors: Sujith Gunawardhana

Abstract:

The circular economy is a system in which resources and energy are derived from renewable sources, utilized efficiently, recycled, and reused to reduce waste, reduce nonrenewable resource consumption, and mitigate negative environmental impacts. However, it poses moral questions about sustainability, the environment, and societal issues. Many societies face challenges when implementing the circular economy, as the concept is still young. The equitable distribution of the advantages and costs of circularity should be ensured during implementation, as some communities, particularly disadvantaged or marginalized ones, may suffer unfairly disproportionately from the harmful effects of production and recycling facilities. Prioritizing the health and safety of workers, communities, and the environment is essential, and strict rules must be implemented to guard against harm. However, most underdeveloped countries need a legal safeguard for this situation. The ultimate objective of the circular economy is to improve social, environmental, and economic performance, but its implementation also requires consideration of the ethics of care and non-epistemic values. Those are often hindered in underdeveloped countries, as the availability of infrastructure and technology, affordability, and legislative framework are poor. To achieve long-term success in the circular economy, evaluating implementation steps and considering health, safety, environmental, and social risks is crucial. To implement the circular economy, respect ethics of care and non-epistemic values. Adopt Kantian Ethics and control technology design to ensure equal benefits for all involved. Ethical gaps may lead underdeveloped countries to generate social pressure against the circular economy.

Keywords: circular economy, ethics, values, sustainability

Procedia PDF Downloads 109
1702 Effects of a Simulated Power Cut in Automatic Milking Systems on Dairy Cows Heart Activity

Authors: Anja Gräff, Stefan Holzer, Manfred Höld, Jörn Stumpenhausen, Heinz Bernhardt

Abstract:

In view of the increasing quantity of 'green energy' from renewable raw materials and photovoltaic facilities, it is quite conceivable that power supply variations may occur, so that constantly working machines like automatic milking systems (AMS) may break down temporarily. The usage of farm-made energy is steadily increasing in order to keep energy costs as low as possible. As a result, power cuts are likely to happen more frequently. Current work in the framework of the project 'stable 4.0' focuses on possible stress reactions by simulating power cuts up to four hours in dairy farms. Based on heart activity it should be found out whether stress on dairy cows increases under these circumstances. In order to simulate a power cut, 12 random cows out of 2 herds were not admitted to the AMS for at least two hours on three consecutive days. The heart rates of the cows were measured and the collected data evaluated with HRV Program Kubios Version 2.1 on the basis of eight parameters (HR, RMSSD, pNN50, SD1, SD2, LF, HF and LF/HF). Furthermore, stress reactions were examined closely via video analysis, milk yield, ruminant activity, pedometer and measurements of cortisol metabolites. Concluding it turned out, that during the test only some animals were suffering from minor stress symptoms, when they tried to get into the AMS at their regular milking time, but couldn´t be milked because the system was manipulated. However, the stress level during a regular “time-dependent milking rejection” was just as high. So the study comes to the conclusion, that the low psychological stress level in the case of a 2-4 hours failure of an AMS does not have any impact on animal welfare and health.

Keywords: dairy cow, heart activity, power cut, stable 4.0

Procedia PDF Downloads 311
1701 Evolutionary Analysis of Green Credit Regulation on Greenwashing Behavior in Dual-Layer Network

Authors: Bo-wen Zhu, Bin Wu, Feng Chen

Abstract:

It has become a common measure among governments to support green development of enterprises through Green Credit policies. In China, the Central Bank of China and other authorities even put forward corresponding assessment requirements for proportion of green credit in commercial banks. Policy changes might raise concerns about commercial banks turning a blind eye to greenwashing behavior by enterprises. The lack of effective regulation may lead to a diffusion of such behavior, and eventually result in the phenomenon of “bad money driving out good money”, which could dampen the incentive effect of Green Credit policies. This paper employs a complex network model based on an evolutionary game analysis framework involving enterprises, banks, and regulatory authorities to investigate inhibitory effect of the Green Credit regulation on enterprises’ greenwashing behavior, banks’ opportunistic and collusive behaviors. The findings are as follows: (1) Banking opportunism rises with Green Credit evaluation criteria and requirements for the proportion of credit balance. Restrictive regulation against violating banks is necessary as there is an increasing trend of banks adopting opportunistic strategy. (2) Raising penalties and probability of regulatory inspections can effectively suppress banks’ opportunistic behavior, however, it cannot entirely eradicate the opportunistic behavior on the bank side. (3) Although maintaining a certain inspection probability can inhibit enterprises from adopting greenwashing behavior, enterprises choose a catering production strategy instead. (4) One-time rewards from local government have limited effects on the equilibrium state and diffusion trend of bank regulatory decision-making.

Keywords: green credit, greenwashing behavior, regulation, diffusion effect

Procedia PDF Downloads 24
1700 Strain Sensing Seams for Monitoring Body Movement

Authors: Sheilla Atieno Odhiambo, Simona Vasile, Alexandra De Raeve, Ann Schwarz

Abstract:

Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam.

Keywords: conductive sewing thread, sensing seams, smart seam, sewing technology

Procedia PDF Downloads 190
1699 A Linguistic Product of K-Pop: A Corpus-Based Study on the Korean-Originated Chinese Neologism Simida

Authors: Hui Shi

Abstract:

This article examines the online popularity of Chinese neologism simida, which is a loanword derived from Korean declarative sentence-final suffix seumnida. Facilitated by corpus data obtained from Weibo, the Chinese counterpart of Twitter, this study analyzes the morphological and syntactical processes behind simida’s coinage, as well as the causes of its prevalence on Chinese social media. The findings show that simida is used by Weibo bloggers in two manners: (1) as an alternative word of 'Korea' and 'Korean'; (2) as a redundant sentence-final particle which adds a Korean-like speech style to a statement. Additionally, Weibo user profile analysis further reveals demographical distribution patterns concerning this neologism and highlights young Weibo users in the third-tier cities as the leading adopters of simida. These results are accounted for under the theoretical framework of social indexicality, especially how variations generate style in the indexical field. This article argues that the creation of such an ethnically-targeted neologism is a linguistic demonstration of Chinese netizen’s two-sided attitudes toward the previously heated Korean-wave. The exotic suffix seumnida is borrowed to Chinese as simida due to its high-frequency in Korean cultural exports. Therefore, it gradually becomes a replacement of Korea-related lexical items due to markedness, regardless of semantic prosody. Its innovative implantation to Chinese syntax, on the other hand, reflects Chinese netizens’ active manipulation of language for their online identity building. This study has implications for research on the linguistic construction of identity and style and lays the groundwork for linguistic creativity in the Chinese new media.

Keywords: Chinese neologism, loanword, humor, new media

Procedia PDF Downloads 174
1698 Analyzing Emerging Scientific Domains in Biomedical Discourse: Case Study Comparing Microbiome, Metabolome, and Metagenome Research in Scientific Articles

Authors: Kenneth D. Aiello, M. Simeone, Manfred Laubichler

Abstract:

It is increasingly difficult to analyze emerging scientific fields as contemporary scientific fields are more dynamic, their boundaries are more porous, and the relational possibilities have increased due to Big Data and new information sources. In biomedicine, where funding, medical categories, and medical jurisdiction are determined by distinct boundaries on biomedical research fields and definitions of concepts, ambiguity persists between the microbiome, metabolome, and metagenome research fields. This ambiguity continues despite efforts by institutions and organizations to establish parameters on the core concepts and research discourses. Further, the explosive growth of microbiome, metabolome, and metagenomic research has led to unknown variation and covariation making application of findings across subfields or coming to a consensus difficult. This study explores the evolution and variation of knowledge within the microbiome, metabolome, and metagenome research fields related to ambiguous scholarly language and commensurable theoretical frameworks via a semantic analysis of key concepts and narratives. A computational historical framework of cultural evolution and large-scale publication data highlight the boundaries and overlaps between the competing scientific discourses surrounding the three research areas. The results of this study highlight how discourse and language distribute power within scholarly and scientific networks, specifically the power to set and define norms, central questions, methods, and knowledge.

Keywords: biomedicine, conceptual change, history of science, philosophy of science, science of science, sociolinguistics, sociology of knowledge

Procedia PDF Downloads 130
1697 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment

Procedia PDF Downloads 168
1696 Prevention of Corruption in Public Purchases

Authors: Anatoly Krivinsh

Abstract:

The results of dissertation research "Preventing and combating corruption in public procurement" are presented in this publication. The study was conducted 2011 till 2013 in a Member State of the European Union, in the Republic of Latvia. Goal of the thesis is to explore corruption prevention and combating issues in public procurement sphere, to identify the prevalence rates, determinants and contributing factors and prevention opportunities in Latvia. In the first chapter the author analyses theoretical aspects of understanding corruption in public procurement, with particular emphasis on corruption definition problem, its nature, causes and consequences. A separate section is dedicated to the public procurement concept, mechanism and legal framework. In the first part of this work the author presents cognitive methodology of corruption in public procurement field, based on which the author has carried out an analysis of corruption situation in public procurement in Republic of Latvia. In the second chapter of the thesis, the author analyzes the problem of corruption in public procurement, including its historical aspects, typology and classification of corruption subjects involved, corruption risk elements in public procurement and their identification. During the development of the second chapter author's practical experience in public procurements was widely used. The third and fourth chapter deals with issues related to the prevention and combating corruption in public procurement, namely the operation of the concept, principles, methods and techniques, subjects in Republic of Latvia, as well as an analysis of foreign experience in preventing and combating corruption. The fifth chapter is devoted to the corruption prevention and combating perspectives and their assessment. In this chapter the author has made the evaluation of corruption prevention and combating measures efficiency in Republic of Latvia, assessment of anti-corruption legislation development stage in public procurement field in Latvia.

Keywords: prevention of corruption, public purchases, good governance, human rights

Procedia PDF Downloads 332
1695 Seroprevalence of Bovine Brucellosis and its Public Health Significance in Selected Sites of Central High Land of Ethiopia

Authors: Temesgen Kassa Getahun, Gezahegn Mamo, Beksisa Urge

Abstract:

A cross-sectional study was conducted from December 2019 to May 2020 with the aim of determining the seroprevalence of brucellosis in dairy cows and their owners in the central highland of Oromia, Ethiopia. A total of 352 blood samples from dairy cattle, 149 from animal owners, and 17 from farm workers were collected and initially screened using the Rose Bengal Plate test and confirmed by the Complement Fixation test. Overall seroprevalence was 0.6% (95% CI: 0.0016–0.0209) in bovines and 1.2% (95% CI: 0.0032–0.0427) in humans. Market-based stock replacement (OR=16.55, p=0.002), breeding by artificial insemination (OR=7.58, p=0.05), and parturition pen (OR = 11.511, p=0.027) were found to be significantly associated with the seropositivity for Brucella infection in dairy cattle. Human housing (OR=1.8, p=0.002), contact with an aborted fetus (OR=21.19, p=0.017), drinking raw milk from non-aborted (OR=24.99, p=0.012), aborted (OR=5.72, p=0.019) and retained fetal membrane (OR=4.22, p=0.029) cows had a significant influence on human brucellosis. A structured interview question was administered to 284 respondents. Accordingly, most respondents had no knowledge of brucellosis (93.3%), and in contrast, 90% of them consumed raw milk. In conclusion, the present seroprevalence study revealed that brucellosis was low among dairy cattle and exposed individuals in the study areas. However, since there were no control strategies implemented in the study areas, there is a potential risk of transmission of brucellosis in dairy cattle and the exposed human population in the study areas. Implementation of a test and slaughter strategy with compensation to farmers is recommended, while in the case of human brucellosis, continuous social training and implementing one health approach framework must be applied.

Keywords: abortion, bovine brucellosis, human brucellosis, risk factors, seroprevalence

Procedia PDF Downloads 105
1694 The Future of Sharia Financing Analysis of Green Finance Financing Strategies in the Sharia State of Aceh

Authors: Damanhur Munardi, Muhammad Hafiz, Dina Nurmalita Sari, Syarifah Ridani Alifa

Abstract:

Purpose: This research aims to analyze the Benefits, Opportunity, Cost, and Risk aspects of applying the Green Finance concept and to obtain the right Green Finance financing strategy to be implemented within a long-term and short-term strategic framework.Methodology: This research method uses a qualitative-descriptive analysis approach. The analysis technique uses Analytical Network Process (ANP) with a BOCR network structure approach.Findings: The research results show that the most priority long-term strategic alternative based on the long-term BOCR analysis is increasing awareness among the public and industry by 52% and the importance of coordination between related institutions by 50%. Meanwhile, the most priority short-term strategic alternatives are the importance of coordination between related institutions 29%, increasing awareness among the public and industry 28%, the banking industry proactively funding environmentally friendly companies and technology 23%, the existence of Green Finance POS (Standard Operating Procedures) 20%.Implications: This research can be used as a reference for regulators and policymakers in making strategic decisions that can increase green finance financing. The novelty of this research is identifying problems that occur in green finance financing in Aceh province by analyzing opinions from experts in related fields and financial regulators in Aceh to create a strategy that can be implemented to increase green finance financing in Aceh province through BPD in Aceh, namely Bank Aceh.

Keywords: green financing, banking, sharia, islamic

Procedia PDF Downloads 64
1693 Drawings Reveal Beliefs of Japanese University Students

Authors: Sakae Suzuki

Abstract:

Although Japanese students study English for six years in secondary schools, they demonstrate little success with it when they enter higher education. Learners’ beliefs can predict the future behavior of students, so it may be effective to investigate how learners’ beliefs limit their success and how beliefs might be nudged in a positive direction. While many researchers still depend on a questionnaire called BALLI to reveal explicit beliefs, alternative approaches, especially those designed to reveal implicit beliefs, might be helpful for promoting learning. The present study seeks to identify beliefs with a discursive approach using visual metaphors and narratives. Employing a sociocultural framework, this study investigates how students’ beliefs are revealed by drawings of themselves and their surrounding environments and artifacts while they are engaged in language learning. Research questions are: (1) Can we identify beliefs through an analysis of students’ visual narratives? (2) What environments and artifacts can be found in students’ drawings, and what do they mean? (3) To what extent do students see language learning as a solitary, rather than a social, activity? Participants are university students majoring in science and technology in Japan. The questionnaire was administered to 70 entering students in April, 2014. Data included students drawings of themselves as learners of English as well as written descriptions of students’ backgrounds, English-learning experiences, and analogies and metaphors that they used in written descriptions of themselves as learners. Data will be analyzed qualitatively and quantitatively. Anticipated results include students’ perceptions of themselves as language learners, including their sense of agency, awareness of artifacts, and social contexts of language learning. Comments will be made on implications for teaching, as well as the use of visual narratives as research tools, and recommended further research.

Keywords: drawings, learners' beliefs, metaphors, BALLI

Procedia PDF Downloads 492
1692 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 128
1691 Revisiting Dispute Resolution Mechanisms in the Southern African Development Community: A Proposal for Synchronization

Authors: Tapiwa Shumba, Nyaradzo D. T. Karubwa

Abstract:

Dispute resolution is the plinth of regional integration initiatives anchored on the rule of law and compliance with obligations. Without effective and reliable despite resolution mechanisms, it may be difficult to foster deeper integration. Within the Southern African Development Community (SADC) legal and institutional framework exists an apparent recognition that dispute resolution is an integral part of the regional integration. Almost all legal instruments of SADC include some provision for dispute resolution. Institutionally, the somewhat now defunct SADC Tribunal is meant to be the fulcrum for resolving disputes that arise under SADC instruments. However, after a closer analysis of the substance of these legal provisions and the attendant procedural mechanisms for addressing disputes, an argument can be made that dispute resolution in SADC is somewhat scant, fragmented and neglected. In most instruments, the common provision on dispute resolution appears to be a ‘mid-night clause’. In other instruments which have specialised provisions and procedures, questions of practicality and genius cannot be avoided. Worse still there now appears to be a lack of magnanimity between the substantive provisions in various instruments and the role of the transformed Tribunal. This scant, fragmented and neglected dispute resolution system may have an impact on the observance of the rule of law and compliance with obligations in the rules-based SADC system. This all, in turn, has an effect on the common agenda for deeper regional integration. This article seeks to expose this scant, fragmented and neglected SADC dispute resolution system and to propose a harmonised system that addresses these challenges. A ‘one stop shop’ system under a strengthened SADC tribunal is proposed as a responsive solution.

Keywords: regional integration, harmonisation, SADC tribunal, dispute resolution

Procedia PDF Downloads 191
1690 Emerging Dimensions of Intrinsic Motivation for Effective Performance

Authors: Prachi Bhatt

Abstract:

Motivated workforce is an important asset of an organisation. Intrinsic motivation is one of the key aspects of people operations and performance. Researches have emphasized the significance of internal factors in individuals’ motivation. In the changing business scenario, it is a challenge for the organizations’ leaders to inspire and motivate their workforce. The present study deals with the intrinsic motivation potential of an individual which govern the innate capability of an individual driving him or her to behave or perform in the changing work environment, tasks, teams. Differences at individual level significantly influence differences in levels of motivation. In the above context, the present research attempts to explore behavioral trait dimensions which influence motivational potential of an individual. The present research emphasizes the significance of intrinsic motivational potential and the significance of exploring the differences in the intrinsic motivational potential levels of individuals at work places. Thus, this paper empirically tests the framework of behavioral traits which affects motivational potential of an individual. With the help of two studies i.e., Study 1 and Study 2, exploratory factor analysis and confirmatory factor analysis, respectively, indicated a reliable measure assessing intrinsic motivational potential of an individual. Given the variety of challenges of motivating contemporary workforce, and with increasing importance of intrinsic motivation, the paper discusses the relevance of the findings and of the measure assessing intrinsic motivational potential. Assessment of such behavioral traits would assist in the effective realization of intrinsic motivational potential of individuals. Additionally, the paper discusses the practical implications and furnishes scope for future research.

Keywords: behavioral traits, individual differences, intrinsic motivational potential, intrinsic motivation, motivation, workplace motivation

Procedia PDF Downloads 196
1689 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 357
1688 Voices of the Grown-Ups: Transnational Rearing among Chinese Families

Authors: Laura Lamas Abraira

Abstract:

Large-scale Chinese immigration in Spain emerged in the 80's. Engaged in their own businesses or working for other Chinese migrants with long schedules, young couples had to choose between contracting or transnationalising the care labour as they were unable to combine productive and reproductive tasks. In most cases, they decided to transnationalize the care labour embodied on grandparents or children migratory paths. Either the grandparents go to Spain to take care of their grandchildren or the kids were left behind or sent to China after being born in Spain in order to be raised with their extended family members. Very little is known about how the people who have been raised in a transnational context relates their own experience and agency as care managers within the family care cycle. In order to fill this gap, this paper aims to inquire into these transnationally-reared Chinese young adults’ narratives about their own experience and expectations (past, present and future) by adopting care circulation and care cycle approach within life course framework. Drawing upon a qualitative study resulting from a multi-sited ethnography (Spain-China), we argue that young adults raised in transnational context build their narratives as a result of an otherness process related to their parents and an essentialization of their Chinese roots to use selectively among different contexts. In doing so, these family narratives constitute a part of their social identity that interact with other dimensions such as the ethnic one. We suggest when building their parent's otherness they also build their sameness among pairs, as members of the same club, marked by transnational care on a double time basis: the practices of their parents as wrong past, and their own as an amendable future.

Keywords: Chinese families, narratives, transnational care, young adults

Procedia PDF Downloads 381
1687 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 252
1686 An Analysis of Human Resource Management Policies for Constructing Employer Brands in the Logistics Sector

Authors: Müberra Yüksel, Ömer Faruk Görçün

Abstract:

The purpose of the present study is to investigate the role of strategic human resource management (SHRM) in constructing "employer branding" in logistics. Prior research does not focus on internal stakeholders, that is, employees. Despite the fact that logistic sector has become customer-oriented, the focus is solely on service quality as the unique aspect of logistic companies for competitive advantage. With an increasing interest lately in internal marketing of the employer brand, the emphasis is on the value that human capital brings to the firm which cannot be imitated. `Employer branding` has been the application of branding and relationship marketing principles for competitive advantage in SHRM. Employer branding is an organizing framework for human resource managers since it represents an organization’s efforts to promote, both within and outside, a coherent view of what makes the firm different and desirable as an employer, i.e., the distinct “employer brand personality” and "employee value propositions" (EVP) offered. The presumption of employer branding enhanced by internal marketing is to make customer-conscious employees to handle services better by being aligned with business mission and goals. Starting from internal customers and analyzing the gaps of EVP by using analytical hierarchy process methodology (AHP) and inquiring whether these brand values are communicated and conceived well may be the initial steps in our proposal for employer branding in logistics sector. This empirical study aims to fill this research gap within the context of an emergent market- Turkey, which is located at a hub of transportation and logistics.

Keywords: Strategic Human Resource Management (SHRM), employer branding, Employee Value Propositions (EVP), Analytical Hierarchy Process (AHP), logistics

Procedia PDF Downloads 343
1685 Comprehensive Framework for Pandemic-Resilient Cities to Avert Future Migrant Crisis: A Case of Mumbai

Authors: Vasudha Thapa, Kiran Chappa

Abstract:

There is a pressing need to prepare cities in the developing countries of the global south such as India against the chaos created by COVID 19 pandemic and future disaster risks. This pandemic posed the nation with an unprecedented challenge of dealing with a wave of stranded migrant workers. These workers comprise the most vulnerable section of the society in case of any pandemic or disaster risks. The COVID 19 pandemic exposed the vulnerability of migrant workers in the urban form and the need for capacity-building strategies against future pandemics. This paper highlights the challenges of these migrant workers in the case of Mumbai city in lockdown, post lockdown, and the current uncertain scenarios. The paper deals with a thorough investigation of the existing and the recent policies and strategies taken by the Urban Local Bodies (ULBs), state, and central government to assist these migrants in the city during this mayhem of uncertainties. The paper looks further deep into the challenges and opportunities presented in the current scenario through the assessment of existing data and response to policy measures taken by the government organizations. The ULBs are at the forefront in the response to any disaster risk, hence the paper assesses the capacity gaps of the Urban local bodies in mitigating the risks posed by any pandemic-like situation. The study further recommends capacity-building strategies at various levels of governance and uniform policy measures to assist the migrant population of the city.

Keywords: urban resilience, covid 19, migrant population, India, capacity building, governance

Procedia PDF Downloads 185
1684 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 105
1683 Application of Metric Dimension of Graph in Unraveling the Complexity of Hyperacusis

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. We constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 38
1682 Evaluating the Use of Manned and Unmanned Aerial Vehicles in Strategic Offensive Tasks

Authors: Yildiray Korkmaz, Mehmet Aksoy

Abstract:

In today's operations, countries want to reach their aims in the shortest way due to economical, political and humanitarian aspects. The most effective way of achieving this goal is to be able to penetrate strategic targets. Strategic targets are generally located deep inside of the countries and are defended by modern and efficient surface to air missiles (SAM) platforms which are operated as integrated with Intelligence, Surveillance and Reconnaissance (ISR) systems. On the other hand, these high valued targets are buried deep underground and hardened with strong materials against attacks. Therefore, to penetrate these targets requires very detailed intelligence. This intelligence process should include a wide range that is from weaponry to threat assessment. Accordingly, the framework of the attack package will be determined. This mission package has to execute missions in a high threat environment. The way to minimize the risk which depends on loss of life is to use packages which are formed by UAVs. However, some limitations arising from the characteristics of UAVs restricts the performance of the mission package consisted of UAVs. So, the mission package should be formed with UAVs under the leadership of a fifth generation manned aircraft. Thus, we can minimize the limitations, easily penetrate in the deep inside of the enemy territory with minimum risk, make a decision according to ever-changing conditions and finally destroy the strategic targets. In this article, the strengthens and weakness aspects of UAVs are examined by SWOT analysis. And also, it revealed features of a mission package and presented as an example what kind of a mission package we should form in order to get marginal benefit and penetrate into strategic targets with the development of autonomous mission execution capability in the near future.

Keywords: UAV, autonomy, mission package, strategic attack, mission planning

Procedia PDF Downloads 550
1681 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 32
1680 Designing the Maturity Model of Smart Digital Transformation through the Foundation Data Method

Authors: Mohammad Reza Fazeli

Abstract:

Nowadays, the fourth industry, known as the digital transformation of industries, is seen as one of the top subjects in the history of structural revolution, which has led to the high-tech and tactical dominance of the organization. In the face of these profits, the undefined and non-transparent nature of the after-effects of investing in digital transformation has hindered many organizations from attempting this area of this industry. One of the important frameworks in the field of understanding digital transformation in all organizations is the maturity model of digital transformation. This model includes two main parts of digital transformation maturity dimensions and digital transformation maturity stages. Mediating factors of digital maturity and organizational performance at the individual (e.g., motivations, attitudes) and at the organizational level (e.g., organizational culture) should be considered. For successful technology adoption processes, organizational development and human resources must go hand in hand and be supported by a sound communication strategy. Maturity models are developed to help organizations by providing broad guidance and a roadmap for improvement. However, as a result of a systematic review of the literature and its analysis, it was observed that none of the 18 maturity models in the field of digital transformation fully meet all the criteria of appropriateness, completeness, clarity, and objectivity. A maturity assessment framework potentially helps systematize assessment processes that create opportunities for change in processes and organizations enabled by digital initiatives and long-term improvements at the project portfolio level. Cultural characteristics reflecting digital culture are not systematically integrated, and specific digital maturity models for the service sector are less clearly presented. It is also clearly evident that research on the maturity of digital transformation as a holistic concept is scarce and needs more attention in future research.

Keywords: digital transformation, organizational performance, maturity models, maturity assessment

Procedia PDF Downloads 107