Search results for: artificial neuron network
2892 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 802891 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies
Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon
Abstract:
In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learningKeywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps
Procedia PDF Downloads 1262890 Behavioral Pattern of 2G Mobile Internet Subscribers: A Study on an Operator of Bangladesh
Authors: Azfar Adib
Abstract:
Like many other countries of the world, mobile internet has been playing a key role in the growth of internet subscriber base in Bangladesh. This study has attempted to identify particular behavioral or usage patterns of 2G mobile internet subscribers who were using the service of the topmost internet service provider (as well as the top mobile operator) of Bangladesh prior to the launching of 3G services (when 2G was fully dominant). It contains some comprehensive analysis carried on different info regarding 2G mobile internet subscribers, obtained from the operator’s own network insights.This is accompanied by the results of a survey conducted among 40 high-frequency users of this service.Keywords: mobile internet, Symbian, Android, iPhone
Procedia PDF Downloads 4382889 Reflections on Economic Recession in the Early Period of Islam: Lessons for Nigeria
Authors: Khalid Ishola Bello
Abstract:
No condition is permanent in life. This phenomenon is more evident in the socio-economic and political life of man regardless of race, colour or religious affiliation. As the economy of an individual or nation stands to be favourable at one time, it may also experience decline and become unbearable at another time. Muslims, towards the third decade of Islam, experienced economic hardship due to some natural and artificial factors. The recession, which lasted for four years, was rescued by different approaches, and economic prosperity was later regained. Some years ago, Nigeria was drastically affected by an economic recession characterized by high rates of unemployment, illiquidity and inflation, which have caused depression to many individuals and organizations. It is the aim of this paper to look into the causes and remedies of the recession in that early period of Islam in order to suggest a way out of the unfriendly economic situation of Nigeria. An analytical method is adopted to draw some lessons from the situation of Muslims of that time to address the current economic challenges in Nigeria. Though Nigeria is not under any natural disaster, the causes seem to be a deliberate reaction of some Nigerians against the government's attempts to curb corruption at all costs and lapses in some government policies.Keywords: recession, hardship, spiritual, lessons, early period of Islam
Procedia PDF Downloads 692888 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: spacecraft control, quantized control, nonlinear control, random dither method
Procedia PDF Downloads 1802887 Ontology-Based Approach for Temporal Semantic Modeling of Social Networks
Authors: Souâad Boudebza, Omar Nouali, Faiçal Azouaou
Abstract:
Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks.Keywords: ontology, semantic web, social network, temporal modeling
Procedia PDF Downloads 3872886 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks
Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook
Abstract:
Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants
Procedia PDF Downloads 722885 Routing Metrics and Protocols for Wireless Mesh Networks
Authors: Samira Kalantary, Zohre Saatzade
Abstract:
Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis.Keywords: wireless mesh networks, routing protocols, routing metrics, bioinformatics
Procedia PDF Downloads 4532884 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 732883 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 962882 A Corpus-Based Analysis of "MeToo" Discourse in South Korea: Coverage Representation in Korean Newspapers
Authors: Sun-Hee Lee, Amanda Kraley
Abstract:
The “MeToo” movement is a social movement against sexual abuse and harassment. Though the hashtag went viral in 2017 following different cultural flashpoints in different countries, the initial response was quiet in South Korea. This radically changed in January 2018, when a high-ranking senior prosecutor, Seo Ji-hyun, gave a televised interview discussing being sexually assaulted by a colleague. Acknowledging public anger, particularly among women, on the long-existing problems of sexual harassment and abuse, the South Korean media have focused on several high-profile cases. Analyzing the media representation of these cases is a window into the evolving South Korean discourse around “MeToo.” This study presents a linguistic analysis of “MeToo” discourse in South Korea by utilizing a corpus-based approach. The term corpus (pl. corpora) is used to refer to electronic language data, that is, any collection of recorded instances of spoken or written language. A “MeToo” corpus has been collected by extracting newspaper articles containing the keyword “MeToo” from BIGKinds, big data analysis, and service and Nexis Uni, an online academic database search engine, to conduct this language analysis. The corpus analysis explores how Korean media represent accusers and the accused, victims and perpetrators. The extracted data includes 5,885 articles from four broadsheet newspapers (Chosun, JoongAng, Hangyore, and Kyunghyang) and 88 articles from two Korea-based English newspapers (Korea Times and Korea Herald) between January 2017 and November 2020. The information includes basic data analysis with respect to keyword frequency and network analysis and adds refined examinations of select corpus samples through naming strategies, semantic relations, and pragmatic properties. Along with the exponential increase of the number of articles containing the keyword “MeToo” from 104 articles in 2017 to 3,546 articles in 2018, the network and keyword analysis highlights ‘US,’ ‘Harvey Weinstein’, and ‘Hollywood,’ as keywords for 2017, with articles in 2018 highlighting ‘Seo Ji-Hyun, ‘politics,’ ‘President Moon,’ ‘An Ui-Jeong, ‘Lee Yoon-taek’ (the names of perpetrators), and ‘(Korean) society.’ This outcome demonstrates the shift of media focus from international affairs to domestic cases. Another crucial finding is that word ‘defamation’ is widely distributed in the “MeToo” corpus. This relates to the South Korean legal system, in which a person who defames another by publicly alleging information detrimental to their reputation—factual or fabricated—is punishable by law (Article 307 of the Criminal Act of Korea). If the defamation occurs on the internet, it is subject to aggravated punishment under the Act on Promotion of Information and Communications Network Utilization and Information Protection. These laws, in particular, have been used against accusers who have publicly come forward in the wake of “MeToo” in South Korea, adding an extra dimension of risk. This corpus analysis of “MeToo” newspaper articles contributes to the analysis of the media representation of the “MeToo” movement and sheds light on the shifting landscape of gender relations in the public sphere in South Korea.Keywords: corpus linguistics, MeToo, newspapers, South Korea
Procedia PDF Downloads 2232881 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)
Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz
Abstract:
Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites
Procedia PDF Downloads 3482880 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2942879 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing
Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin
Abstract:
Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network
Procedia PDF Downloads 802878 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 252877 Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS
Authors: Reini S. Ilmiaty, Muhammad B. Al Amin, Sarino, Muzamil Jariski
Abstract:
Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River.Keywords: flood modelling, HEC-GeoRAS, HEC-RAS, inundation map
Procedia PDF Downloads 5122876 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 2972875 Societal Resilience Assessment in the Context of Critical Infrastructure Protection
Authors: Hannah Rosenqvist, Fanny Guay
Abstract:
Critical infrastructure protection has been an important topic for several years. Programmes such as the European Programme for Critical Infrastructure Protection (EPCIP), Critical Infrastructure Warning Information Network (CIWIN) and the European Reference Network for Critical Infrastructure Protection (ENR-CIP) have been the pillars to the work done since 2006. However, measuring critical infrastructure resilience has not been an easy task. This has to do with the fact that the concept of resilience has several definitions and is applied in different domains such as engineering and social sciences. Since June 2015, the EU project IMPROVER has been focusing on developing a methodology for implementing a combination of societal, organizational and technological resilience concepts, in the hope to increase critical infrastructure resilience. For this paper, we performed research on how to include societal resilience as a form of measurement of the context of critical infrastructure resilience. Because one of the main purposes of critical infrastructure (CI) is to deliver services to the society, we believe that societal resilience is an important factor that should be considered when assessing the overall CI resilience. We found that existing methods for CI resilience assessment focus mainly on technical aspects and therefore that is was necessary to develop a resilience model that take social factors into account. The model developed within the project IMPROVER aims to include the community’s expectations of infrastructure operators as well as information sharing with the public and planning processes. By considering such aspects, the IMPROVER framework not only helps operators to increase the resilience of their infrastructures on the technical or organizational side, but aims to strengthen community resilience as a whole. This will further be achieved by taking interdependencies between critical infrastructures into consideration. The knowledge gained during this project will enrich current European policies and practices for improved disaster risk management. The framework for societal resilience analysis is based on three dimensions for societal resilience; coping capacity, adaptive capacity and transformative capacity which are capacities that have been recognized throughout a widespread literature review in the field. A set of indicators have been defined that describe a community’s maturity within these resilience dimensions. Further, the indicators are categorized into six community assets that need to be accessible and utilized in such a way that they allow responding to changes and unforeseen circumstances. We conclude that the societal resilience model developed within the project IMPROVER can give a good indication of the level of societal resilience to critical infrastructure operators.Keywords: community resilience, critical infrastructure protection, critical infrastructure resilience, societal resilience
Procedia PDF Downloads 2302874 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.Keywords: multi-objective, analysis, data flow, freight delivery, methodology
Procedia PDF Downloads 1802873 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV
Authors: Mohammed Qasim, Kyoung-Dae Kim
Abstract:
In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor
Procedia PDF Downloads 3992872 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU
Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais
Abstract:
Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking
Procedia PDF Downloads 342871 Survey Paper on Graph Coloring Problem and Its Application
Authors: Prateek Chharia, Biswa Bhusan Ghosh
Abstract:
Graph coloring is one of the prominent concepts in graph coloring. It can be defined as a coloring of the various regions of the graph such that all the constraints are fulfilled. In this paper various graphs coloring approaches like greedy coloring, Heuristic search for maximum independent set and graph coloring using edge table is described. Graph coloring can be used in various real time applications like student time tabling generation, Sudoku as a graph coloring problem, GSM phone network.Keywords: graph coloring, greedy coloring, heuristic search, edge table, sudoku as a graph coloring problem
Procedia PDF Downloads 5392870 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry
Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn
Abstract:
The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.Keywords: growth, partnership, selection criteria, value chain
Procedia PDF Downloads 1332869 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 942868 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico
Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón
Abstract:
The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.Keywords: interaction, political communication, social network analysis, Twitter
Procedia PDF Downloads 2212867 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1162866 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1222865 A Bioinspired Anti-Fouling Coating for Implantable Medical Devices
Authors: Natalie Riley, Anita Quigley, Robert M. I. Kapsa, George W. Greene
Abstract:
As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces.Keywords: anti-fouling, bioinspired, cell attachment, lubricin
Procedia PDF Downloads 1242864 Determination of the Walkability Comfort for Urban Green Space Using Geographical Information System
Authors: Muge Unal, Cengiz Uslu, Mehmet Faruk Altunkasa
Abstract:
Walkability relates to the ability of the places to connect people with varied destinations within a reasonable amount of time and effort, and to offer visual interest in journeys throughout the network. So, the good quality of the physical environment and arrangement of walkway and sidewalk appear to be more crucial in influencing the pedestrian route choice. Also, proximity, connectivity, and accessibility are significant factor for walkability in terms of an equal opportunity for using public spaces. As a result, there are two important points for walkability. Firstly, the place should have a well-planned street network for accessible and secondly facilitate the pedestrian need for comfort. In this respect, this study aims to examine the both physical and bioclimatic comfort levels of the current condition of pedestrian route with reference to design criteria of a street to access the urban green spaces. These aspects have been identified as the main indicators for walkable streets such as continuity, materials, slope, bioclimatic condition, walkway width, greenery, and surface. Additionally, the aim was to identify the factors that need to be considered in future guidelines and policies for planning and design in urban spaces especially streets. Adana city was chosen as a study area. Adana is a province of Turkey located in south-central Anatolia. This study workflow can be summarized in four stages: (1) environmental and physical data were collected by referred to literature and used in a weighted criteria method to determine the importance level of these data , (2) environmental characteristics of pedestrian routes gained from survey studies are evaluated to hierarchies these criteria of the collected information, (3) and then each pedestrian routes will have a score that provides comfortable access to the park, (4) finally, the comfortable routes to park will be mapped using GIS. It is hoped that this study will provide an insight into future development planning and design to create a friendly and more comfort street environment for the users.Keywords: comfort level, geographical information system (GIS), walkability, weighted criteria method
Procedia PDF Downloads 3112863 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety
Procedia PDF Downloads 124