Search results for: revenue generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3734

Search results for: revenue generation

344 Innovative Technologies of Management of Personnel Processes in the Public Civil Service

Authors: O. V. Jurieva, O. U. Jurieva, R. H. Yagudin, P. B. Chursin

Abstract:

In the recent scientific researches on the problems of public service the idea of the use of innovative technologies of management of personnel processes is accurately formulated. Authors made an attempt to analyze the changes in the public service organizations and to understand how the studied situation is interpreted by the government employees themselves. For this purpose the strategy of sociological research was carried out on the basis of application of questionnaire developed by M. Rokich and focus group research. For the research purposes it was necessary to get to microlevel in order to include daily activities of employees of an organization, their life experience and values in the focus of the analysis. Based on P. Bourdieu's methodology, authors investigated the established patterns of consciousness and behavior of officials (doxa) and also analyzed the tendencies of re-thinking (change) of the settled content of values (heterodoxy) by them. The distinctive feature of the conducted research is that the public servants who have different length of service in the public service took part in the research procedure. The obtained data helped to answer the following question: what are the specifics of doxs of the public servants who work in the public civil service more than 7-10 years and what perception of values of civil service have junior experts whose work experience doesn't exceed 3 years. Respondents were presented by two groups: (1) public servants of the level of main positions in the public civil service of the Republic of Tatarstan. (2) Public servants of the level of lower positions in the ministries and departments of the Republic of Tatarstan. For the study of doxa or of the existing values of public servants, the research with use of the questionnaire based on M. Rokich's system is conducted. Two types of values are emphasised: terminal and instrumental, which are united by us in the collective concept doxa. Doxa: the instrument of research of the established patterns of consciousness and behavior which can either resist to changes in the organization or, on the contrary, support their implementation. In the following stage an attempt to deepen our understanding of the essence and specifics of doxa of officials by means of the applied sociological research which is carried out by focus group method is made. Information obtained by authors during the research convinces that for the success of policy of changes in the organizations of public service it is necessary to develop special technologies of informing employees about the essence and inevitability of the developed innovations, to involve them in the process of changes, to train and to develop the younger generation of civil servants, seriously to perceive additional training and retraining of officials.

Keywords: innovative technologies, public service organizations, public servants

Procedia PDF Downloads 273
343 Preparation of Allyl BODIPY for the Click Reaction with Thioglycolic Acid

Authors: Chrislaura Carmo, Luca Deiana, Mafalda Laranjo, Abilio Sobral, Armando Cordova

Abstract:

Photodynamic therapy (PDT) is currently used for the treatment of malignancies and premalignant tumors. It is based on the capture of a photosensitizing molecule (PS) which, when excited by light at a certain wavelength, reacts with oxygen and generates oxidizing species (radicals, singlet oxygen, triplet species) in target tissues, leading to cell death. BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indaceno) derivatives are emerging as important candidates for photosensitizer in photodynamic therapy of cancer cells due to their high triplet quantum yield. Today these dyes are relevant molecules in photovoltaic materials and fluorescent sensors. In this study, it will be demonstrated the possibility that BODIPY can be covalently linked to thioglycolic acid through the click reaction. Thiol−ene click chemistry has become a powerful synthesis method in materials science and surface modification. The design of biobased allyl-terminated precursors with high renewable carbon content for the construction of the thiol-ene polymer networks is essential for sustainable development and green chemistry. The work aims to synthesize the BODIPY (10-(4-(allyloxy) phenyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f] [1,3,2] diazaborinin-4-ium-5-uide) and to click reaction with Thioglycolic acid. BODIPY was synthesized by the condensation reaction between aldehyde and pyrrole in dichloromethane, followed by in situ complexation with BF3·OEt2 in the presence of the base. Then it was functionalized with allyl bromide to achieve the double bond and thus be able to carry out the click reaction. The thiol−ene click was performed using DMPA (2,2-Dimethoxy-2-phenylacetophenone) as a photo-initiator in the presence of UV light (320–500 nm) in DMF at room temperature for 24 hours. Compounds were characterized by standard analytical techniques, including UV-Vis Spectroscopy, 1H, 13C, 19F NMR and mass spectroscopy. The results of this study will be important to link BODIPY to polymers through the thiol group offering a diversity of applications and functionalization. This new molecule can be tested as third-generation photosensitizers, in which the dye is targeted by antibodies or nanocarriers by cells, mainly in cancer cells, PDT and Photodynamic Antimicrobial Chemotherapy (PACT). According to our studies, it was possible to visualize a click reaction between allyl BODIPY and thioglycolic acid. Our team will also test the reaction with other thiol groups for comparison. Further, we will do the click reaction of BODIPY with a natural polymer linked with a thiol group. The results of the above compounds will be tested in PDT assays on various lung cancer cell lines.

Keywords: bodipy, click reaction, thioglycolic acid, allyl, thiol-ene click

Procedia PDF Downloads 132
342 Radiation Induced DNA Damage and Its Modification by Herbal Preparation of Hippophae rhamnoides L. (SBL-1): An in vitro and in vivo Study in Mice

Authors: Anuranjani Kumar, Madhu Bala

Abstract:

Ionising radiation exposure induces generation of free radicals and the oxidative DNA damage. SBL-1, a radioprotective leaf extract prepared from leaves Hippophae rhamnoides L. (Common name; Seabuckthorn), showed > 90% survival in mice population that was treated with lethal dose (10 Gy) of ⁶⁰Co gamma irradiation. In this study, early effects of pre-treatment with or without SBL-1 in blood peripheral blood lymphocytes (PBMCs) were investigated by cell viability assays (trypan blue and MTT). The quantitative in vitro study of Hoescht/PI staining was performed to check the apoptosis/necrosis in PBMCs irradiated at 2 Gy with or without pretreatment of SBL-1 (at different concentrations) up to 24 and 48h. Comet assay was performed in vivo, to detect the DNA strands breaks and its repair mechanism on peripheral blood lymphocytes at lethal dose (10 Gy). For this study, male mice (wt. 28 ± 2g) were administered radioprotective dose (30mg/kg body weight) of SBL-1, 30 min prior to irradiation. Animals were sacrificed at 24h and 48h. Blood was drawn through cardiac puncture, and blood lymphocytes were separated using histopaque column. Both neutral and alkaline comet assay were performed using standardized technique. In irradiated animals, alkaline comet assay revealed single strand breaks (SSBs) that showed significant (p < 0.05) increase in percent DNA in tail and Olive tail moment (OTM) at 24 h while at 48h the percent DNA in tail further increased significantly (p < 0.02). The double strands breaks (DSBs) increased significantly (p < 0.01) at 48 h in neutral assay, in comparison to untreated control. The animals pre-treated with SBL-1 before irradiation showed significantly (p < 0.05) less DSBs at 48 h treatment in comparison to irradiated group of animals. The SBL-1 alone treated group itself showed no toxicity. The antioxidant potential of SBL-1 were also investigated by in vitro biochemical assays such as DPPH (p < 0.05), ABTS, reducing ability (p < 0.09), hydroxyl radical scavenging (p < 0.05), ferric reducing antioxidant power (FRAP), superoxide radical scavenging activity (p < 0.05), hydrogen peroxide scavenging activity (p < 0.05) etc. SBL-1 showed strong free radical scavenging power that plays important role in the studies of radiation-induced injuries. The SBL-1 treated PBMCs showed significant (p < 0.02) viability in trypan blue assay at 24-hour incubation.

Keywords: radiation, SBL-1, SSBs, DSBs, FRAP, PBMCs

Procedia PDF Downloads 154
341 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)

Authors: Eliane G. Tótoli, Hérida Regina N. Salgado

Abstract:

Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.

Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region

Procedia PDF Downloads 381
340 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 162
339 Noninvasive Technique for Measurement of Heartbeat in Zebrafish Embryos Exposed to Electromagnetic Fields at 27 GHz

Authors: Sara Ignoto, Elena M. Scalisi, Carmen Sica, Martina Contino, Greta Ferruggia, Antonio Salvaggio, Santi C. Pavone, Gino Sorbello, Loreto Di Donato, Roberta Pecoraro, Maria V. Brundo

Abstract:

The new fifth generation technology (5G), which should favor high data-rate connections (1Gbps) and latency times lower than the current ones (<1ms), has the characteristic of working on different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus also exploiting higher frequencies than previous mobile radio generations (1G-4G). The higher frequency waves, however, have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern in recent years about the possible harmful effects on human health and several studies were published using several animal models. This study aimed to observe the possible short-term effects induced by 5G-millimeter waves on heartbeat of early life stages of Danio rerio using DanioScope software (Noldus). DanioScope is the complete toolbox for measurements on zebrafish embryos and larvae. The effect of substances can be measured on the developing zebrafish embryo by a range of parameters: earliest activity of the embryo’s tail, activity of the developing heart, speed of blood flowing through the vein, length and diameters of body parts. Activity measurements, cardiovascular data, blood flow data and morphometric parameters can be combined in one single tool. Obtained data are elaborate and provided by the software both numerical as well as graphical. The experiments were performed at 27 GHz by a no commercial high gain pyramidal horn antenna. According to OECD guidelines, exposure to 5G-millimeter waves was tested by fish embryo toxicity test within 96 hours post fertilization, Observations were recorded every 24h, until the end of the short-term test (96h). The results have showed an increase of heartbeat rate on exposed embryos at 48h hpf than control group, but this increase has not been shown at 72-96 h hpf. Nowadays, there is a scant of literature data about this topic, so these results could be useful to approach new studies and also to evaluate potential cardiotoxic effects of mobile radiofrequency.

Keywords: Danio rerio, DanioScope, cardiotoxicity, millimeter waves.

Procedia PDF Downloads 163
338 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon

Authors: Jeffrey A. Amelse

Abstract:

Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.

Keywords: carbon dioxide, net zero, sequestration, biomass, leaves

Procedia PDF Downloads 128
337 Circular Economy Maturity Models: A Systematic Literature Review

Authors: Dennis Kreutzer, Sarah Müller-Abdelrazeq, Ingrid Isenhardt

Abstract:

Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation, because this change affects not only production but also the entire company. Maturity models offer an approach, as they enable companies to determine the current status of their transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g. IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyse the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. Since the terms "maturity model" and "readiness model" are often used to assess the transformation process, this paper considers both types of models to provide a more comprehensive result. For this purpose, circular economy maturity models at the company (micro) level were identified from the literature, compared, and analysed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the holism of their assessment framework. Only a few models include the entire company with supporting areas outside the value-creating core process, e.g. strategy and vision. Additionally, there are large differences in the number and type of indicators as well as their metrics. For example, most models often use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.

Keywords: maturity model, circular economy, transformation, metric, assessment

Procedia PDF Downloads 114
336 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 611
335 Development and Psychometric Validation of the Hospitalised Older Adults Dignity Scale for Measuring Dignity during Acute Hospital Admissions

Authors: Abdul-Ganiyu Fuseini, Bernice Redley, Helen Rawson, Lenore Lay, Debra Kerr

Abstract:

Aim: The study aimed to develop and validate a culturally appropriate patient-reported outcome measure for measuring dignity for older adults during acute hospital admissions. Design: A three-phased mixed-method sequential exploratory design was used. Methods: Concept elicitation and generation of items for the scale was informed by older adults’ perspectives about dignity during acute hospitalization and a literature review. Content validity evaluation and pre-testing were undertaken using standard instrument development techniques. A cross-sectional survey design was conducted involving 270 hospitalized older adults for evaluation of construct and convergent validity, internal consistency reliability, and test–retest reliability of the scale. Analysis was performed using Statistical Package for the Social Sciences, version 25. Reporting of the study was guided by the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Results: We established the 15-item Hospitalized Older Adults’ Dignity Scale that has a 5-factor structure: Shared Decision-Making (3 items); Healthcare Professional-Patient Communication (3 items); Patient Autonomy (4 items); Patient Privacy (2 items); and Respectful Care (3 items). Excellent content validity, adequate construct and convergent validity, acceptable internal consistency reliability, and good test-retest reliability were demonstrated. Conclusion: We established the Hospitalized Older Adults Dignity Scale as a valid and reliable scale to measure dignity for older adults during acute hospital admissions. Future studies using confirmatory factor analysis are needed to corroborate the dimensionality of the factor structure and external validity of the scale. Routine use of the scale may provide information that informs the development of strategies to improve dignity-related care in the future. Impact: The development and validation of the Hospitalized Older Adults Dignity Scale will provide healthcare professionals with a feasible and reliable scale for measuring older adults’ dignity during acute hospitalization. Routine use of the scale may enable the capturing and incorporation of older patients’ perspectives about their healthcare experience and provide information that informs the development of strategies to improve dignity-related care in the future.

Keywords: dignity, older adults, hospitalisation, scale, patients, dignified care, acute care

Procedia PDF Downloads 90
334 Urban Waste Management for Health and Well-Being in Lagos, Nigeria

Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo

Abstract:

High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.

Keywords: health, infrastructure, management, septage, well-being

Procedia PDF Downloads 174
333 The Impact of Online Visit Practice by Midwifery Students on Child-Rearing Midwives during The COVID-19 Pandemic: A Qualitative Descriptive Study

Authors: Mari Murakami, Hiromi Kawasaki, Saori Fujimoto, Yoko Ueno

Abstract:

Background: In Japan, one of the goals of midwifery education is the development of one’s ability to comprehensively support the child-rearing generation in collaboration with professionals from other disciplines. However, in order to prevent the spread of Covid-19, it has become extremely difficult to provide face-to-face support for mothers and children. Early on in the pandemic, we sought help from three parenting midwives as an alternative and attempted an online visit. Since midwives who are raising children respond to the training as both mothers who are care recipients and midwives as care providers. Therefore, we attempted to verify the usefulness of midwives experiencing training as mothers by clarifying the effects on those midwives who are raising children and who have experienced online visit training by students. Methods: The online visitations were conducted in June 2020. The collaborators were three midwives who were devoted to childcare. During the online visit training, we used the feedback records of their questions given by the collaborators (with their permission) to the students. The verbatim record was created from the records. Qualitative descriptive analysis was used, and subcategories and categories were extracted. This study was approved by the Ethical Committee for Epidemiology of Hiroshima University. Results: The average age of the three midwives was 36.3 years, with an average of 12.3 years of experience after graduation. They were each raising multiple children (ranging between a minimum of 2 and a maximum of 4 children). Their youngest infants were 6.7 months old on average for all. Five categories that emerged were: contributing to the development of midwifery students as a senior; the joy of accepting the efforts of a mother while raising children; recalling the humility of beginners through the integrity of midwifery students; learning opportunities about the benefits of online visits; and suggesting further challenges for online visits. Conclusion: The online visit training was an opportunity for midwives who are raising their own children to reinforce an honest and humble approach based on the attitude of the students, for self-improvement, and to reflect on the practice of midwifery from another person’s viewpoint. It was also noted that the midwives contributed to the education of midwifery students. Furthermore, they also agreed with the use of online visitations and considered the advantages and disadvantages of its use from the perspective of mothers and midwives. Online visits were seen to empower midwives on childcare leave, as their child-rearing was accepted and admired. Online visits by students were considered to be an opportunity to not only provide a sense of fulfillment as a recipient of care but also to think concretely about career advancement, during childcare leave, regarding the ideal way for midwifery training and teaching.

Keywords: child-rearing midwife, COVID-19 pandemic, online visit practice, qualitive descriptive study

Procedia PDF Downloads 143
332 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System

Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li

Abstract:

The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.

Keywords: afterburner, combustion, field synergy, solid oxide fuel cell

Procedia PDF Downloads 137
331 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 161
330 The Igbo People's Dual Religion Identity on Rite of Marriage in Imo State

Authors: Henry Okechukwu Onyeiwu, Arfah Ab. Majid

Abstract:

To fully understand the critical role of marriage in society, it is important to view it as a social institution that provides some basic social needs for society. A ‘social institution’ is the network of shared meanings, norms, definitions, expectations, and understandings held by the members of society. It is what guides and governs how the members of the society are expected to act and interact, what is socially desirable and legitimate, what they should be striving for, and so on. One of the major social institutions is marriage. Marriage is and has often focused on children and what is best for them because the rising generation literally is the future of every society. However, according to the aforementioned definition, which notes that marriage may also be a union between two persons of the same sex with legal support, this study stands with the definitions that are based on marriage being a union between a man and woman that is the most appropriate in Igbo land and not the other way round. The issue to be evaluated concerns marriage as it associates with Igbo Catholic Christians in Nigeria. Pasts of Igbo culture should be better organized into the Christian faith. Igbo Christians actually convey a significant number of their customary thoughts, customs, and social qualities, particularly regarding marriage, in the aftermath of switching to Christianity. The analyst agrees that marriage among Igbo Christians warrants adequate evolution. This study, therefore, concentrates on the Igbo community’s interpretation of the concept of culture and religion and the religious implications of traditional marriage and Christian marriage ceremonies in Igbo. The research design of this study is a qualitative design that provides in-depth information on the dual religious identity of the Igbo people on the rite of marriage in Imo state. The study population was composed of both male and female members from each selected local government area in Imo State. Thematic analysis was used to elaborate on the result from the respondents. This survey found that reputation is a major concern for Ibo people. Parental discomfort can lead to the use of coping strategies such as displacement, in which parents pass on their own vulnerable sentiments to their children. Those who participate in marriage negotiations feel the pain of their parents because they are unable to communicate their own feelings. As a result, participants experience increased stress and a range of negative emotions related to their marriage, including worry, dissatisfaction, and ambivalence. It was concluded that when it comes to Igbo culture, marriage is seen as a need for the continuation of the family’s lineage of descent, according to the outcome. The Task at hand was to discover how the locals preparing to get married define the impending transition. Imo State is home to the practice of Igba-nkwu, where the woman is either inherited or taken in the place of another.

Keywords: Igbo, culture, Christianity, traditional marriage, Christian wedding

Procedia PDF Downloads 161
329 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 115
328 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 283
327 Environmental Aspects of Alternative Fuel Use for Transport with Special Focus on Compressed Natural Gas (CNG)

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

The history of gaseous fuel use in the motive power of vehicles dates back to the second half of the nineteenth century, and thus the beginnings of the automotive industry. The engines were powered by coal gas and became the prototype for internal combustion engines built so far. It can thus be considered that this construction gave rise to the automotive industry. As the socio-economic development advances, so does the number of motor vehicles. Although, due to technological progress in recent decades, the emissions generated by internal combustion engines of cars have been reduced, a sharp increase in the number of cars and the rapidly growing traffic are an important source of air pollution and a major cause of acoustic threat, in particular in large urban agglomerations. One of the solutions, in terms of reducing exhaust emissions and improving air quality, is a more extensive use of alternative fuels: CNG, LNG, electricity and hydrogen. In the case of electricity use for transport, it should be noted that the environmental outcome depends on the structure of electricity generation. The paper shows selected regulations affecting the use of alternative fuels for transport (including Directive 2014/94/EU) and its dynamics between 2000 and 2015 in Poland and selected EU countries. The paper also gives a focus on the impact of alternative fuels on the environment by comparing the volume of individual emissions (compared to the emissions from conventional fuels: petrol and diesel oil). Bearing in mind that the extent of various alternative fuel use is determined in first place by economic conditions, the article describes the price relationships between alternative and conventional fuels in Poland and selected EU countries. It is pointed out that although Poland has a wealth of experience in using methane alternative fuels for transport, one of the main barriers to their development in Poland is the extensive use of LPG. In addition, a poorly developed network of CNG stations in Poland, which does not allow easy transport, especially in the northern part of the country, is a serious problem to a further development of CNG use as fuel for transport. An interesting solution to this problem seems to be the use of home CNG filling stations: Home Refuelling Appliance (HRA, refuelling time 8-10 hours) and Home Refuelling Station (HRS, refuelling time 8-10 minutes). The team is working on HRA and HRS technologies. The article also highlights the impact of alternative fuel use on energy security by reducing reliance on imports of crude oil and petroleum products.

Keywords: alternative fuels, CNG (Compressed Natural Gas), CNG stations, LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles), pollutant emissions

Procedia PDF Downloads 227
326 Association of Copy Number Variation of the CHKB, KLF6, GPC1, and CHRM3 Genes with Growth Traits of Datong Yak (Bos grunniens)

Authors: Habtamu Abera Goshu, Ping Yan

Abstract:

Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage, position effects, alteration of downstream pathways, modification of chromosome structure, and position within the nucleus and disrupting coding regions in the genome. Associating copy number variations (CNVs) with growth and gene expression are a powerful approach for identifying genomic characteristics that contribute to phenotypic and genotypic variation. A previous study using next-generation sequencing illustrated that the choline kinase beta (CHKB), Krüpple-like factor 6 (KLF6), glypican 1(GPC1), and cholinergic receptor muscarinic 3 (CHRM3) genes reside within copy number variable regions (CNVRs) of yak populations that overlap with quantitative trait loci (QTLs) of meat quality and growth. As a result, this research aimed to determine the association of CNVs of the KLF6, CHKB, GPC1, and CHRM3 genes with growth traits in the Datong yak breed. The association between the CNV types of the KLF6, CHKB, GPC1, and CHRM3 genes and the growth traits in the Datong yak breed was determined by one-way analysis of variance (ANOVA) using SPSS software. The CNV types were classified as a loss (a copy number of 0 or 1), gain (a copy number >2), and normal (a copy number of 2) relative to the reference gene, BTF3 in the 387 individuals of Datong yak. These results indicated that the normal CNV types of the CHKB and GPC1 genes were significantly (P<0.05) associated with high body length, height and weight, and chest girth in six-month-old and five-year-old Datong yaks. On the other hand, the loss CNV types of the KLF6 gene is significantly (P<0.05) associated with body weight and length and chest girth at six-month-old and five-year-old Datong yaks. In the contrary, the gain CNV type of the CHRM3 gene is highly (P<0.05) associated with body weight, length, height, and chest girth in six-month-old and five-year-old. This work provides the first observation of the biological role of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in the Datong yak breed and might, therefore, provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yak breeds. Therefore, we hypothesized that this study provided inclusive information on the application of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in growth traits in Datong yaks and its possible function in bovine species.

Keywords: Copy number variation, growth traits, yak, genes

Procedia PDF Downloads 172
325 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 175
324 Insertion of Photovoltaic Energy at Residential Level at Tegucigalpa and Comayagüela, Honduras

Authors: Tannia Vindel, Angel Matute, Erik Elvir, Kelvin Santos

Abstract:

Currently in Honduras, is been incentivized the generation of energy using renewable fonts, such as: hydroelectricity, wind power, biomass and, more recently with the strongest growth, photovoltaic energy. In July 2015 were installed 455.2 MW of photovoltaic energy, increasing by 24% the installed capacity of the national interconnected system existing in 2014, according the National Energy Company (NEC), that made possible reduce the thermoelectric dependency of the system. Given the good results of those large-scale photovoltaic plants, arises the question: is it interesting for the distribution utility and for the consumers the integration of photovoltaic systems in micro-scale in the urban and rural areas? To answer that question has been researched the insertion of photovoltaic energy in the residential sector in Tegucigalpa and Comayagüela (Central District), Honduras to determine the technical and economic viability. Francisco Morazán department, according the National Statistics Institute (NSI), in 2001 had more than 180,000 houses with power service. Tegucigalpa, department and Honduras capital, and Comayagüela, both, have the highest population density in the region, with 1,300,000 habitants in 2014 (NSI). The residential sector in the south-central region of Honduras represents a high percentage being 49% of total consumption, according with NEC in 2014; where 90% of this sector consumes in a range of 0 to 300 kWh / month. All this, in addition to the high level of losses in the transmission and distribution systems, 31.3% in 2014, and the availability of an annual average solar radiation of 5.20 kWh/(m2∙day) according to the NASA, suggests the feasibility of the implementation of photovoltaic systems as a solution to give a level of independency to the households, and besides could be capable of injecting the non-used energy to the grid. The capability of exchange of energy with the grid could make the photovoltaic systems acquisition more affordable to the consumers, because of the compensation energy programs or other kinds of incentives that could be created. Technical viability of the photovoltaic systems insertion has been analyzed, considering the solar radiation monthly average to determine the monthly average of energy that would be generated with the technology accessible locally and the effects of the injection of the energy locally generated on the grid. In addition, the economic viability has been analyzed too, considering the photovoltaic systems high costs, costs of the utility, location and monthly energy consumption requirements of the families. It was found that the inclusion of photovoltaic systems in Tegucigalpa and Comayagüela could decrease in 6 MW the demand for the region if 100% of the households use photovoltaic systems, which acquisition may be more accessible with the help of government incentives and/or the application of energy exchange programs.

Keywords: grid connected, photovoltaic, residential, technical analysis

Procedia PDF Downloads 263
323 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 290
322 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.

Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design

Procedia PDF Downloads 236
321 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 148
320 Solar Power Generation in a Mining Town: A Case Study for Australia

Authors: Ryan Chalk, G. M. Shafiullah

Abstract:

Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.

Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality

Procedia PDF Downloads 166
319 Toxicological Analysis of Some Plant Combinations Used for the Treatment of Hypertension by Lay People in Northern Kwazulu-Natal, South Africa

Authors: Mmbulaheni Ramulondi, Sandy Van Vuuren, Helene De Wet

Abstract:

The use of plant combinations to treat various medical conditions is not a new concept, and it is known that traditional people do not only rely on a single plant extract for efficacy but often combine various plant species for treatment. The knowledge of plant combinations is transferred from one generation to the other in the belief that combination therapy may enhance efficacy, reduce toxicity, decreases adverse effects, increase bioavailability and result in lower dosages. However, combination therapy may also be harmful when the interaction is antagonistic, since it may result in increasing toxicity. Although a fair amount of research has been done on the toxicity of medicinal plants, there is very little done on the toxicity of medicinal plants in combination. The aim of the study was to assess the toxicity potential of 19 plant combinations which have been documented as treatments of hypertension in northern KwaZulu-Natal by lay people. The aqueous extracts were assessed using two assays; the Brine shrimp assay (Artemia franciscana) and the Ames test (Mutagenicity). Only one plant combination (Aloe marlothii with Hypoxis hemerocallidea) in the current study has been previously assessed for toxicity. With the Brine shrimp assay, the plant combinations were tested in two concentrations (2 and 4 mg/ml), while for mutagenicity tests, they were tested at 5 mg/ml. The results showed that in the Brine shrimp assay, six combinations were toxic at 4 mg/ml. The combinations were Albertisia delagoensis with Senecio serratuloides (57%), Aloe marlothii with Catharanthus roseus (98%), Catharanthus roseus with Hypoxis hemerocallidea (66%), Catharanthus roseus with Musa acuminata (89%), Catharanthus roseus with Momordica balsamina (99%) and Aloe marlothii with Trichilia emetica and Hyphaene coriacea (50%). However when the concentration was reduced to 2 mg/ml, only three combinations were toxic which were Aloe marlothii with Catharanthus roseus (76%), Catharanthus roseus with Musa acuminata (66%) and Catharanthus roseus with Momordica balsamina (73%). For the mutagenicity assay, only the combinations between Catharanthus roseus with Hypoxis hemerocallidea and Catharanthus roseus with Momordica balsamina were mutagenic towards the Salmonella typhimurium strains TA98 and TA100. Most of the combinations which were toxic involve C. roseus which was also toxic when tested singularly. It is worth noting that C. roseus was one of the most frequently used plant species both to treat hypertension singularly and in combination and some of the individuals have been using this for the last 20 years. The mortality percentage of the Brine shrimp showed a significant correlation between dosage and toxicity thus toxicity was dosage dependant. A combination which is worth noting is the combination between A. delagoensis and S. serratuloides. Singularly these plants were non-toxic towards Brine shrimp, however their combination resulted in antagonism with the mortality rate of 57% at the total concentration of 4 mg/ml. Low toxicity was mostly observed, giving some validity to combined use, however the few combinations showing increased toxicity demonstrate the importance of analysing plant combinations.

Keywords: dosage, hypertension, plant combinations, toxicity

Procedia PDF Downloads 353
318 Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.

Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound

Procedia PDF Downloads 366
317 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 136
316 Ethical Artificial Intelligence: An Exploratory Study of Guidelines

Authors: Ahmad Haidar

Abstract:

The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.

Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI

Procedia PDF Downloads 93
315 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 146