Search results for: statistical machine translation
3763 Eosinophils and Platelets: Players of the Game in Morbid Obese Boys with Metabolic Syndrome
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Childhood obesity, which may lead to increased risk for heart diseases in children as well as adults, is one of the most important health problems throughout the world. Prevalences of morbid obesity and metabolic syndrome (MetS) are being increased during childhood age group. MetS is a cluster of metabolic and vascular abnormalities including hypercoagulability and an increased risk of cardiovascular diseases (CVDs). There are also some relations between some components of MetS and leukocytes. The aim of this study is to investigate complete blood cell count parameters that differ between morbidly obese boys and girls with MetS diagnosis. A total of 117 morbid obese children with MetS consulted to Department of Pediatrics in Faculty of Medicine Hospital at Namik Kemal University were included into the scope of the study. The study population was classified based upon their genders (60 girls and 57 boys). Their heights and weights were measured and body mass index (BMI) values were calculated. WHO BMI-for age and sex percentiles were used. The values above 99 percentile were defined as morbid obesity. Anthropometric measurements were performed. Waist-to-hip and head-to-neck ratios as well as homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Hematological variables were measured. Statistical analyses were performed using SPSS. The degree for statistical significance was p ≤ 0.05. There was no statistically significant difference between the ages (11.2±2.6 years vs 11.2±3.0 years) and BMIs (28.6±5.2 kg/m2 vs 29.3±5.2 kg/m2) of boys and girls (p ≥ 0.05), respectively. Significantly increased waist-to-hip ratios were obtained for boys (0.94±0.08 vs 0.91±0.06; p=0.023). Significantly elevated values of hemoglobin (13.55±0.98 vs 13.06±0.82; p=0.004), mean corpuscular hemoglobin concentration (33.79±0.91 vs 33.21±1.14; p=0.003), eosinophils (0.300±0.253 vs 0.196±0.197; p=0.014), and platelet (347.1±81.7 vs 319.0±65.9; p=0.042) were detected for boys. There was no statistically significant difference between the groups in terms of neutrophil/lymphocyte ratios as well as HOMA-IR values (p ≥ 0.05). Statistically significant gender-based differences were found for hemoglobin as well as mean corpuscular hemoglobin concentration and hence, separate reference intervals for two genders should be considered for these parameters. Eosinophils may contribute to the development of thrombus in acute coronary syndrome. Eosinophils are also known to make an important contribution to mechanisms related to thrombosis pathogenesis in acute myocardial infarction. Increased platelet activity is observed in patients with MetS and these individuals are more susceptible to CVDs. In our study, elevated platelets described as dominant contributors to hypercoagulability and elevated eosinophil counts suggested to be related to the development of CVDs observed in boys may be the early indicators of the future cardiometabolic complications in this gender.Keywords: children, complete blood count, gender, metabolic syndrome
Procedia PDF Downloads 2173762 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 1963761 Improvement of GVPI Insulation System Characteristics by Curing Process Modification
Authors: M. Shadmand
Abstract:
The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.Keywords: insulation system, GVPI, PDC, aging
Procedia PDF Downloads 2683760 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 1973759 The Role of Emotion in Attention Allocation
Authors: Michaela Porubanova
Abstract:
In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.Keywords: attention, emotion, flicker task, IAPS
Procedia PDF Downloads 3543758 Implementing Online Blogging in Specific Context Using Process-Genre Writing Approach in Saudi EFL Writing Class to Improve Writing Learning and Teaching Quality
Authors: Sultan Samah A. Alenezi
Abstract:
Many EFL teachers are eager to look into the best way to suit the needs of their students in EFL writing courses. Numerous studies suggest that online blogging may present a social interaction opportunity for EFL writing students. Additionally, it can foster peer collaboration and social support in the form of scaffolding, which, when viewed from the perspective of socio-cultural theory, can boost social support and foster the development of students' writing abilities. This idea is based on Vygotsky's theories, which emphasize how collaboration and social interaction facilitate effective learning. In Saudi Arabia, students are taught to write using conventional methods that are totally under the teacher's control. Without any peer contact or cooperation, students are spoon-fed in a passive environment. This study included the cognitive processes of the genre-process approach into the EFL writing classroom to facilitate the use of internet blogging in EFL writing education. Thirty second-year undergraduate students from the Department of Languages and Translation at a Saudi college participated in this study. This study employed an action research project that blended qualitative and quantitative methodologies to comprehend Saudi students' perceptions and experiences with internet blogging in an EFL process-genre writing classroom. It also looked at the advantages and challenges people faced when blogging. They included a poll, interviews, and blog postings made by students. The intervention's outcomes showed that merging genre-process procedures with blogging was a successful tactic, and the Saudi students' perceptions of this method of online blogging for EFL writing were quite positive. The socio-cultural theory constructs that Vygotsky advocates, such as scaffolding, collaboration, and social interaction, were also improved by blogging. These elements demonstrated the improvement in the students' written, reading, social, and collaborative thinking skills, as well as their positive attitudes toward English-language writing. But the students encountered a variety of problems that made blogging difficult for them. These problems ranged from technological ones, such sluggish internet connections, to learner inadequacies, like a lack of computer know-how and ineffective time management.Keywords: blogging, process-gnere approach, saudi learenrs, writing quality
Procedia PDF Downloads 1213757 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1003756 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method
Procedia PDF Downloads 3413755 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm
Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif
Abstract:
This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm
Procedia PDF Downloads 1883754 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 2223753 The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia
Authors: Sameerah A. Al-Hariri Al-Zahrani
Abstract:
The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school
Procedia PDF Downloads 1593752 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2523751 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 4903750 Effect of Three Sand Types on Potato Vegetative Growth and Yield
Authors: Shatha A. Yousif, Qasim M. Zamil, Hasan Y. Al Muhi, Jamal A. Al Shammari
Abstract:
Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight.Keywords: correlation, potato, sand culture, yield
Procedia PDF Downloads 4763749 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704
Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi
Abstract:
In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.Keywords: corn, nitrogen, comparison, biological yield
Procedia PDF Downloads 3583748 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.Keywords: dimensional accuracy, PMMA, CNTs, laser cutting
Procedia PDF Downloads 3073747 Factors Affecting the Critical Understanding of the Strategies Which Children Use to Motivate Parents in the Family Buying Process: Case of British Bangladeshi Children in the UK
Authors: Salma Akter, Mohammad M. Haque, Lawrence Akwetey
Abstract:
An empirical research design will analyze different factors/predictors children use to influence their parents in the family buying decision process in the unexplored area of British Bangladeshi children in the United Kingdom. The proposed conceptual model of factors- buying decision making process will be tested by the Structure Equation Model. A structured Questionnaire and secondary sources will employ to collect data and analyse and measure the validity by Statistical tools (SPSS) and Microsoft Excel. The Contemporary research aims to use the deductive approach developing the research questions and testing the hypothesis to identify the impact of different strategies British Bangladeshi children used to influence their parents in the family buying decision which was overlooked in the previous research.Keywords: British Bangladeshi children, buying decision process, children influence, influential factors
Procedia PDF Downloads 2693746 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology
Authors: Deepak
Abstract:
WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.Keywords: AA-6063, response surface methodology, WEDM, surface roughness
Procedia PDF Downloads 1163745 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System
Authors: Mamta M. Barapatre, V. N. Sahare
Abstract:
Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept
Procedia PDF Downloads 2783744 Development of Optimized Eye Mascara Packages with Bioinspired Spiral Methodology
Authors: Daniela Brioschi, Rovilson Mafalda, Silvia Titotto
Abstract:
In the present days, packages are considered a fundamental element in the commercialization of products and services. A good package is capable of helping to attract new customers and also increasing a product’s purchase intent. In this scenario, packaging design emerges as an important tool, since products and design of their packaging are so interconnected that they are no longer seen as separate elements. Packaging design is, in fact, capable of generating desire for a product. The packaging market for cosmetics, especially makeup market, has also been experiencing an increasing level of sophistication and requirements. Considering packaging represents an important link of communication with the final user and plays a significant role on the sales process, it is of great importance that packages accomplish not only with functional requirements but also with the visual appeal. One of the possibilities for the design of packages and, in this context, packages for make-up, is the bioinspired design – or biomimicry. The bio-inspired design presents a promising paradigm for innovation in both design and sustainable design, by using biological system analogies to develop solutions. It has gained importance as a widely diffused movement in design for environmentally conscious development and is also responsible for several useful and innovative designs. As eye mascara packages are also part of the constant evolution on the design for cosmetics area and the traditional packages present the disadvantage of product drying along time, this project aims to develop a new and innovative package for this product, by using a selected bioinspired design methodology during the development process and also suitable computational tools. In order to guide the development process of the package, it was chosen the spiral methodology, conceived by The Biomimicry Institut, which consists of a reliable tool, since it was based on traditional design methodologies. The spiral design comprises identification, translation, discovery, abstraction, emulation and evaluation steps, that can work iteratively as the process develops as a spiral. As support tool for packaging, 3D modelling is being used by the software Inventor Autodesk Inventor 2018. Although this is an ongoing research, first results showed that spiral methodology design, together with Autodesk Inventor, consist of suitable instruments for the bio-inspired design process, and also nature proved itself to be an amazing and inexhaustible source of inspiration.Keywords: bio-inspired design, design methodology, packaging, cosmetics
Procedia PDF Downloads 1883743 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 503742 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments
Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul
Abstract:
A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff
Procedia PDF Downloads 4003741 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 1303740 Maintaining Biodiversity Through Environmental Conservation Awareness Program in Nigeria School Sectors
Authors: Oluwasegun A. Oke, Mayowa A. Abolaji, Oluwaseun A. Adefila
Abstract:
Environmental problems have become a priority on the world political agenda for the last two decades and this is inevitably linked with the general degradation of our environment which calls for ultimate attention. Therefore, this study searched for better and more involving methods of imparting environmental knowledge to average learner with the view of creating awareness, increasing knowledge as well as changing their attitude positively towards conservation of the environment. The study also investigated the effectiveness of conservation club in creating awareness (among students) about environmental conservation. About 240 Students were randomly selected for data collection using validated instruments (questionnaires). T-test statistics, chi-square and simple percentage were the major statistical tools employed in data analysis. This study revealed that environmental conservation club plays a vital role in creating awareness as well as promoting students understanding of environmental issues to promote positive attitude towards natural environment.Keywords: environmental conservation, biodiversity, awareness program, environmental disasters
Procedia PDF Downloads 2903739 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery
Authors: Payal Patel
Abstract:
Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.Keywords: flyer, size optimization, textile, weight
Procedia PDF Downloads 2163738 Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling
Authors: Hui Li, Xueying Zhao, Ke Ma, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu
Abstract:
Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future.Keywords: bacterial profiling, forensic, massively parallel sequencing, soil evidence
Procedia PDF Downloads 5643737 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 3503736 Determination of Elements and Minerals Present in Harmattan Dust Using Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF) Across Selected Nigerian Stations
Authors: Aweda Francis Olatunbosun, Falaiye Oluwasesan Adeniran
Abstract:
The suspended harmattan dust was collected at seven different stations in Nigeria: Iwo (7º 63'N, 4º 19'E), Oyo (8º 12'N, 3º 42'E), Ilorin (8º36'N, 4º 35'E), Minna (9º36'N, 06º35'E), Abuja (09º 09'N, 07º 11'E), Lafia (08º 49'N, 07º50'E), and Jos (9º55'N, 8º55'E), which were analyzed to determine elements and minerals present in the sample using X-Ray Fluorescence (XRF), and Particle Induced X-Ray Emission (PIXE). The collected sample results show the elemental concentration of the sample in various forms across each station. Cr, Ce, Mo, Zr, Sr, V, Ti, K, As, Ni, Mn, Ca, Pb, Fe, Zn, and Cu were found in the sample using an XRF machine. The minerals discovered in the sample include, but are not limited to, Corundum [Al₂O₃], Periclase [MgO], Rutile [TiO₂], and Quartz [SiO₂] in various proportions. Furthermore, the results revealed the enrichment factor for Iwo (1.3998 μg/m³), Oyo (1.3998 μg/m³), Ilorin (1.79765 μg/m³), Minna (1.737325 μg/m³), Abuja (1.635425 μg/m³), Lafia (1.409695 μg/m³), and Jos (1.787075 μg/m³). The study concluded that the sample contains sixteen (16) elements and minerals in varying percentages and concentrations. It is therefore recommended that appropriate safety procedures be put in place to raise community awareness of the presence of elements in harmattan dust.Keywords: elements, minerals, harmattan dust, XRF, PIXE
Procedia PDF Downloads 3443735 Influence of Transformation Leadership Style on Employee Engagement among Generation Y
Authors: Z. D. Mansor, C. P. Mun, B. S. Nurul Farhana, Wan Aisyah Nasuha Wan Mohamed Tarmizi
Abstract:
The aim of this research is to determine the influence of transformation leadership style on employee engagement among Generation Y. The growing of Generation Y employees in Malaysia has raised concerns about how to engage and motivate this cohort. Transformation Leadership style is one of the key factors to increase employee engagement levels in the organization. This study has proven to be important for the researchers and the organization to properly understand the concept of employee engagement, transformation leadership style and their relationship. The samples in this study included 221 respondents of Generation Y who are currently working in Selangor and Klang Valley area in Malaysia. The data were collected using questionnaires and analyzed by using Statistical Package for Social Science (SPSS). The results show that there is a significant relationship between the dimension of intellectual stimulation, inspiration motivation and individual consideration on employee engagement. In contrast, the results have revealed that there is no significant relationship between idealized influences of a leader on employee engagement among Generation Y.Keywords: employee engagement, transformational leadership styles, gen Y, survey
Procedia PDF Downloads 3443734 Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode
Authors: Fahrudin Nugroho, Halim Hamadi, Yusril Yusuf, Pekik Nurwantoro, Ari Setiawan, Yoshiki Hidaka
Abstract:
We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation.Keywords: compressed exponential, dynamical heterogeneity, Nikolaevskiy equation, stretched exponential, turbulence
Procedia PDF Downloads 436