Search results for: composite indicators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3593

Search results for: composite indicators

233 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 201
232 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 206
231 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 112
230 Determination of Cyanotoxins from Leeukraal and Klipvoor Dams

Authors: Moletsane Makgotso, Mogakabe Elijah, Marrengane Zinhle

Abstract:

South Africa’s water resources quality is becoming more and more weakened by eutrophication, which deteriorates its usability. Thirty five percent of fresh water resources are eutrophic to hypertrophic, including grossly-enriched reservoirs that go beyond the globally-accepted definition of hypertrophy. Failing infrastructure adds to the problem of contaminated urban runoff which encompasses an important fraction of flows to inland reservoirs, particularly in the non-coastal, economic heartland of the country. Eutrophication threatens the provision of potable and irrigation water in the country because of the dependence on fresh water resources. Eutrophicated water reservoirs increase water treatment costs, leads to unsuitability for recreational purposes and health risks to human and animal livelihood due to algal proliferation. Eutrophication is caused by high concentrations of phosphorus and nitrogen in water bodies. In South Africa, Microsystis and Anabaena are widely distributed cyanobacteria, with Microcystis being the most dominant bloom-forming cyanobacterial species associated with toxin production. Two impoundments were selected, namely the Klipvoor and Leeukraal dams as they are mainly used for fishing, recreational, agricultural and to some extent, potable water purposes. The total oxidized nitrogen and total phosphorus concentration were determined as causative nutrients for eutrophication. Chlorophyll a and total microcystins, as well as the identification of cyanobacteria was conducted as indicators of cyanobacterial infestation. The orthophosphate concentration was determined by subjecting the samples to digestion and filtration followed by spectrophotometric analysis of total phosphates and dissolved phosphates using Aquakem kits. The total oxidized nitrates analysis was conducted by initially conducting filtration followed by spectrophotometric analysis. Chlorophyll a was quantified spectrophotometrically by measuring the absorbance of before and after acidification. Microcystins were detected using the Quantiplate Microcystin Kit, as well as microscopic identification of cyanobacterial species. The Klipvoor dam was found to be hypertrophic throughout the study period as the mean Chlorophyll a concentration was 269.4µg/l which exceeds the mean value for the hypertrophic state. The mean Total Phosphorus concentration was >0.130mg/l, and the total microcystin concentration was > 2.5µg/l throughout the study. The most predominant algal species were found to be the Microcystis. The Leeukraal dam was found to be mesotrophic with the potential of it becoming eutrophic as the mean concentration for chlorophyll a was 18.49 µg/l with the mean Total Phosphorus > 0.130mg/l and the Total Microcystin concentration < 0.16µg/l. The cyanobacterial species identified in Leeukraal have been classified as those that do not pose a potential risk to any impoundment. Microcystis was present throughout the sampling period and dominant during the warmer seasons. The high nutrient concentrations led to the dominance of Microcystis that resulted in high levels of microcystins rendering the impoundments, particularly Klipvoor undesirable for utilisation.

Keywords: nitrogen, phosphorus, cyanobacteria, microcystins

Procedia PDF Downloads 253
229 A Conceptual Framework of Integrated Evaluation Methodology for Aquaculture Lakes

Authors: Robby Y. Tallar, Nikodemus L., Yuri S., Jian P. Suen

Abstract:

Research in the subject of ecological water resources management is full of trivial questions addressed and it seems, today to be one branch of science that can strongly contribute to the study of complexity (physical, biological, ecological, socio-economic, environmental, and other aspects). Existing literature available on different facets of these studies, much of it is technical and targeted for specific users. This study offered the combination all aspects in evaluation methodology for aquaculture lakes with its paradigm refer to hierarchical theory and to the effects of spatial specific arrangement of an object into a space or local area. Therefore, the process in developing a conceptual framework represents the more integrated and related applicable concept from the grounded theory. A design of integrated evaluation methodology for aquaculture lakes is presented. The method is based on the identification of a series of attributes which can be used to describe status of aquaculture lakes using certain indicators from aquaculture water quality index (AWQI), aesthetic aquaculture lake index (AALI) and rapid appraisal for fisheries index (RAPFISH). The preliminary preparation could be accomplished as follows: first, the characterization of study area was undertaken at different spatial scales. Second, an inventory data as a core resource such as city master plan, water quality reports from environmental agency, and related government regulations. Third, ground-checking survey should be completed to validate the on-site condition of study area. In order to design an integrated evaluation methodology for aquaculture lakes, finally we integrated and developed rating scores system which called Integrated Aquaculture Lake Index (IALI).The development of IALI are reflecting a compromise all aspects and it responds the needs of concise information about the current status of aquaculture lakes by the comprehensive approach. IALI was elaborated as a decision aid tool for stakeholders to evaluate the impact and contribution of anthropogenic activities on the aquaculture lake’s environment. The conclusion was while there is no denying the fact that the aquaculture lakes are under great threat from the pressure of the increasing human activities, one must realize that no evaluation methodology for aquaculture lakes can succeed by keeping the pristine condition. The IALI developed in this work can be used as an effective, low-cost evaluation methodology of aquaculture lakes for developing countries. Because IALI emphasizes the simplicity and understandability as it must communicate to decision makers and the experts. Moreover, stakeholders need to be helped to perceive their lakes so that sites can be accepted and valued by local people. For this site of lake development, accessibility and planning designation of the site is of decisive importance: the local people want to know whether the lake condition is safe or whether it can be used.

Keywords: aesthetic value, AHP, aquaculture lakes, integrated lakes, RAPFISH

Procedia PDF Downloads 211
228 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 77
227 Exploration Tools for Tantalum-Bearing Pegmatites along Kibara Belt, Central and Southwestern Uganda

Authors: Sadat Sembatya

Abstract:

Tantalum metal is used in addressing capacitance challenge in the 21st-century technology growth. Tantalum is rarely found in its elemental form. Hence it’s often found with niobium and the radioactive elements of thorium and uranium. Industrial processes are required to extract pure tantalum. Its deposits are mainly oxide associated and exist in Ta-Nb oxides such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals are of minor importance. The stability and chemical inertness of tantalum makes it a valuable substance for laboratory equipment and a substitute for platinum. Each period of Tantalum ore formation is characterized by specific mineralogical and geochemical features. Compositions of Columbite-Group Minerals (CGM) are variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (DR Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite-tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian-Nubian Shield (Egypt, Ethiopia) and the Tantalite Valley pegmatites (southern Namibia). There are large compositional variations through Fe-Mn fractionation, followed by Nb-Ta fractionation. These are typical for pegmatites usually associated with very coarse quartz-feldspar-mica granites. They are young granitic systems of the Kibara Belt of Central Africa and the Older Granites of Nigeria. Unlike ‘simple’ Be-pegmatites, most Ta-Nb rich pegmatites have the most complex zoning. Hence we need systematic exploration tools to find and rapidly assess the potential of different pegmatites. The pegmatites exist as known deposits (e.g., abandoned mines) and the exposed or buried pegmatites. We investigate rocks and minerals to trace for the possibility of the effect of hydrothermal alteration mainly for exposed pegmatites, do mineralogical study to prove evidence of gradual replacement and geochemistry to report the availability of trace elements which are good indicators of mineralisation. Pegmatites are not good geophysical responders resulting to the exclusion of the geophysics option. As for more advanced prospecting, we bulk samples from different zones first to establish their grades and characteristics, then make a pilot test plant because of big samples to aid in the quantitative characterization of zones, and then drill to reveal distribution and extent of different zones but not necessarily grade due to nugget effect. Rapid assessment tools are needed to assess grade and degree of fractionation in order to ‘rule in’ or ‘rule out’ a given pegmatite for future work. Pegmatite exploration is also unique, high risk and expensive hence right traceability system and certification for 3Ts are highly needed.

Keywords: exploration, mineralogy, pegmatites, tantalum

Procedia PDF Downloads 116
226 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 112
225 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership

Authors: Markéta Chmelíková, David Ullrich, Iva Burešová

Abstract:

The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.

Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic

Procedia PDF Downloads 71
224 Heat Stress a Risk Factor for Poor Maternal Health- Evidence from South India

Authors: Vidhya Venugopal, Rekha S.

Abstract:

Introduction: Climate change and the growing frequency of higher average temperatures and heat waves have detrimental health effects, especially for certain vulnerable groups with limited socioeconomic status (SES) or physiological capacity to adapt to or endure high temperatures. Little research has been conducted on the effects of heat stress on pregnant women and fetuses in tropical regions such as India. Very high ambient temperatures may worsen Adverse Pregnancy Outcomes (APOs) and are a major worry in the scenario of climate change. The relationship between rising temperatures and APO must be better understood in order to design more effective interventions. Methodology: We conducted an observational cohort study involving 865 pregnant women in various districts of Tamil Nadu districts between 2014 and 2021. Physiological Heat Strain Indicators (HSI) such as morning and evening Core Body Temperature (CBT) and Urine Specific Gravity (USG) were monitored using an infrared thermometer and refractometer, respectively. A validated, modified version of the HOTHAPS questionnaire was utilised to collect self-reported health symptoms. A follow-up was undertaken with the mothers to collect information regarding birth outcomes and APOs, such as spontaneous abortions, stillbirths, Preterm Birth (PTB), birth abnormalities, and Low Birth Weight (LBW). Major findings of the study: According to the findings of our study, ambient temperatures (mean WBGT°C) were substantially higher (>28°C) for approximately 46% of women performing moderate daily life activities. 82% versus 43% of these women experienced dehydration and heat-related complaints. 34% of women had USG >1.020, which is symptomatic of dehydration. APOs, which include spontaneous abortions, were prevalent at 2.2%, stillbirth/preterm birth/birth abnormalities were prevalent at 2.2%, and low birth weight was prevalent at 16.3%. With exposures to WBGT>28°C, the incidence of miscarriage or unexpected abortion rose by approximately 2.7 times (95% CI: 1.1-6.9). In addition, higher WBGT exposures were associated with a 1.4-fold increased risk of unfavorable birth outcomes (95% Confidence Interval [CI]: 1.02-1.09). The risk of spontaneous abortions was 2.8 times higher among women who conceived during the hotter months (February – September) compared to those women who conceived in the cooler months (October – January) (95% CI: 1.04-7.4). Positive relationships between ambient heat and APOs found in this study necessitate further exploration into the underlying factors for extensive cohort studies to generate information to enable the formulation of policies that can effectively protect these women against excessive heat stress for enhanced maternal and fetal health.

Keywords: heat exposures, community, pregnant women, physiological strain, adverse outcome, interventions

Procedia PDF Downloads 52
223 Conceptualization and Assessment of Key Competencies for Children in Preschools: A Case Study in Southwest China

Authors: Yumei Han, Naiqing Song, Xiaoping Yang, Yuping Han

Abstract:

This study explores the conceptualization of key competencies that children are expected to develop in three year preschools (age 3-6) and the assessment practices of such key competencies in China. Assessment of children development has been put into the central place of early childhood education quality evaluation system in China. In the context of students key competencies development centered education reform in China, defining and selecting key competencies of children in preschools are of great significance in that they would lay a solid foundation for children’s lifelong learning path, and they would lead to curriculum and instruction reform, teacher development reform as well as quality evaluation reform in the early childhood education area. Based on sense making theory and framework, this study adopted multiple stakeholders’ (early childhood educators, parents, evaluation administrators, scholars in the early childhood education field) perspectives and grass root voices to conceptualize and operationalize key competencies for children in preschools in Southwest China. On the ground of children development theories, Chinese and international literature related to children development and key competencies, and key competencies frameworks by UNESCO, OECD and other nations, the authors designed a two-phase sequential mixed method study to address three main questions: (a) How is early childhood key competency defined or labeled from literature and from different stakeholders’ views? (b) Based on the definitions explicated in the literature and the surveys on different stakeholders, what domains and components are regarded to constitute the key competency framework of children in three-year preschools in China? (c) How have early childhood key competencies been assessed and measured, and how such assessment and measurement contribute to enhancing early childhood development quality? On the first phase, a series of focus group surveys were conducted among different types of stakeholders around the research questions. Moreover, on the second phase, based on the coding of the participants’ answers, together with literature synthesis findings, a questionnaire survey was designed and conducted to select most commonly expected components of preschool children’s key competencies. Semi-structured open questions were also included in the questionnaire for the participants to add on competencies beyond the checklist. Rudimentary findings show agreeable concerns on the significance and necessity of conceptualization and assessment of key competencies for children in preschools, and a key competencies framework composed of 7 domains and 25 indicators was constructed. Meanwhile, the findings also show issues in the current assessment practices of children’s competencies, such as lack of effective assessment tools, lack of teacher capacity in applying the tools to evaluating children and advancing children development accordingly. Finally, the authors put forth suggestions and implications for China and international communities in terms of restructuring early childhood key competencies framework, and promoting child development centered reform in early childhood education quality evaluation and development.

Keywords: assessment, conceptualization, early childhood education quality in China, key competencies

Procedia PDF Downloads 224
222 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 187
221 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 238
220 Empowering South African Female Farmers through Organic Lamb Production: A Cost Analysis Case Study

Authors: J. M. Geyser

Abstract:

Lamb is a popular meat throughout the world, particularly in Europe, the Middle East and Oceania. However, the conventional lamb industry faces challenges related to environmental sustainability, climate change, consumer health and dwindling profit margins. This has stimulated an increasing demand for organic lamb, as it is perceived to increase environmental sustainability, offer superior quality, taste, and nutritional value, which is appealing to farmers, including small-scale and female farmers, as it often commands a premium price. Despite its advantages, organic lamb production presents challenges, with a significant hurdle being the high production costs encompassing organic certification, lower stocking rates, higher mortality rates and marketing cost. These costs impact the profitability and competitiveness or organic lamb producers, particularly female and small-scale farmers, who often encounter additional obstacles, such as limited access to resources and markets. Therefore, this paper examines the cost of producing organic lambs and its impact on female farmers and raises the research question: “Is organic lamb production the saving grace for female and small-scale farmers?” Objectives include estimating and comparing production costs and profitability or organic lamb production with conventional lamb production, analyzing influencing factors, and assessing opportunities and challenges for female and small-scale farmers. The hypothesis states that organic lamb production can be a viable and beneficial option for female and small-scale farmers, provided that they can overcome high production costs and access premium markets. The study uses a mixed-method approach, combining qualitative and quantitative data. Qualitative data involves semi-structured interviews with ten female and small-scale farmers engaged in organic lamb production in South Africa. The interview covered topics such as farm characteristics, practices, cost components, mortality rates, income sources and empowerment indicators. Quantitative data used secondary published information and primary data from a female farmer. The research findings indicate that when a female farmer moves from conventional lamb production to organic lamb production, the cost in the first year of organic lamb production exceed those of conventional lamb production by over 100%. This is due to lower stocking rates and higher mortality rates in the organic system. However, costs start decreasing in the second year as stocking rates increase due to manure applications on grazing and lower mortality rates due to better worm resistance in the herd. In conclusion, this article sheds light on the economic dynamics of organic lamb production, particularly focusing on its impact on female farmers. To empower female farmers and to promote sustainable agricultural practices, it is imperative to understand the cost structures and profitability of organic lamb production.

Keywords: cost analysis, empowerment, female farmers, organic lamb production

Procedia PDF Downloads 38
219 Three-Dimensional Model of Leisure Activities: Activity, Relationship, and Expertise

Authors: Taekyun Hur, Yoonyoung Kim, Junkyu Lim

Abstract:

Previous works on leisure activities had been categorizing activities arbitrarily and subjectively while focusing on a single dimension (e.g. active-passive, individual-group). To overcome these problems, this study proposed a Korean leisure activities’ matrix model that considered multidimensional features of leisure activities, which was comprised of 3 main factors and 6 sub factors: (a) Active (physical, mental), (b) Relational (quantity, quality), (c) Expert (entry barrier, possibility of improving). We developed items for measuring the degree of each dimension for every leisure activity. Using the developed Leisure Activities Dimensions (LAD) questionnaire, we investigated the presented dimensions of a total of 78 leisure activities which had been enjoyed by most Koreans recently (e.g. watching movie, taking a walk, watching media). The study sample consisted of 1348 people (726 men, 658 women) ranging in age from teenagers to elderlies in their seventies. This study gathered 60 data for each leisure activity, a total of 4860 data, which were used for statistical analysis. First, this study compared 3-factor model (Activity, Relation, Expertise) fit with 6-factor model (physical activity, mental activity, relational quantity, relational quality, entry barrier, possibility of improving) fit by using confirmatory factor analysis. Based on several goodness-of-fit indicators, the 6-factor model for leisure activities was a better fit for the data. This result indicates that it is adequate to take account of enough dimensions of leisure activities (6-dimensions in our study) to specifically apprehend each leisure attributes. In addition, the 78 leisure activities were cluster-analyzed with the scores calculated based on the 6-factor model, which resulted in 8 leisure activity groups. Cluster 1 (e.g. group sports, group musical activity) and Cluster 5 (e.g. individual sports) had generally higher scores on all dimensions than others, but Cluster 5 had lower relational quantity than Cluster 1. In contrast, Cluster 3 (e.g. SNS, shopping) and Cluster 6 (e.g. playing a lottery, taking a nap) had low scores on a whole, though Cluster 3 showed medium levels of relational quantity and quality. Cluster 2 (e.g. machine operating, handwork/invention) required high expertise and mental activity, but low physical activity. Cluster 4 indicated high mental activity and relational quantity despite low expertise. Cluster 7 (e.g. tour, joining festival) required not only moderate degrees of physical activity and relation, but low expertise. Lastly, Cluster 8 (e.g. meditation, information searching) had the appearance of high mental activity. Even though clusters of our study had a few similarities with preexisting taxonomy of leisure activities, there was clear distinctiveness between them. Unlike the preexisting taxonomy that had been created subjectively, we assorted 78 leisure activities based on objective figures of 6-dimensions. We also could identify that some leisure activities, which used to belong to the same leisure group, were included in different clusters (e.g. filed ball sports, net sports) because of different features. In other words, the results can provide a different perspective on leisure activities research and be helpful for figuring out what various characteristics leisure participants have.

Keywords: leisure, dimensional model, activity, relationship, expertise

Procedia PDF Downloads 278
218 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 122
217 Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish

Authors: Priyanka Gupta, Nilanjana Bairagi, Deepti Gupta

Abstract:

New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections.

Keywords: antimicrobial finish, bacteria, infection control, silver, white coat

Procedia PDF Downloads 189
216 Chronically Ill Patient Satisfaction: An Indicator of Quality of Service Provided at Primary Health Care Settings in Alexandria

Authors: Alyaa Farouk Ibrahim, Gehan ElSayed, Ola Mamdouh, Nazek AbdelGhany

Abstract:

Background: Primary health care (PHC) can be considered the first contact between the patient and the health care system. It includes all the basic health care services to be provided to the community. Patient's satisfaction regarding health care has often improved the provision of care, also considered as one of the most important measures for evaluating the health care. Objective: This study aims to identify patient’s satisfaction with services provided at the primary health care settings in Alexandria. Setting: Seven primary health care settings representing the seven zones of Alexandria governorate were selected randomly and included in the study. Subjects: The study comprised 386 patients attended the previously selected settings at least twice before the time of the study. Tools: Two tools were utilized for data collection; sociodemographic characteristics and health status structured interview schedule and patient satisfaction scale. Reliability test for the scale was done using Cronbach's Alpha test, the result of the test ranged between 0.717 and 0.967. The overall satisfaction was computed and divided into high, medium, and low satisfaction. Results: Age of the studied sample ranged between 19 and 62 years, more than half (54.2%) of them aged 40 to less than 60 years. More than half (52.8%) of the patients included in the study were diabetics, 39.1% of them were hypertensive, 19.2% had cardiovascular diseases, the rest of the sample had tumor, liver diseases, and orthopedic/neurological disorders (6.5%, 5.2% & 3.2%, respectively). The vast majority of the study group mentioned high satisfaction with overall service cost, environmental conditions, medical staff attitude and health education given at the PHC settings (87.8%, 90.7%, 86.3% & 90.9%, respectively), however, medium satisfaction was mostly reported concerning medical checkup procedures, follow-up data and referral system (41.2%, 28.5% & 28.9%, respectively). Score level of patient satisfaction with health services provided at the assessed Primary health care settings proved to be significantly associated with patients’ social status (P=0.003, X²=14.2), occupation (P=0.011, X²=11.2), and monthly income (P=0.039, X²=6.50). In addition, a significant association was observed between score level of satisfaction and type of illness (P=0.007, X²=9.366), type of medication (P=0.014, X²=9.033), prior knowledge about the health center (P=0.050, X²=3.346), and highly significant with the administrative zone (P=0.001, X²=55.294). Conclusion: The current study revealed that overall service cost, environmental conditions, staff attitude and health education at the assessed primary health care settings gained high patient satisfaction level, while, medical checkup procedures, follow-up, and referral system caused a medium level of satisfaction among assessed patients. Nevertheless, social status, occupation, monthly income, type of illness, type of medication and administrative zones are all factors influencing patient satisfaction with services provided at the health facilities.

Keywords: patient satisfaction, chronic illness, quality of health service, quality of service indicators

Procedia PDF Downloads 320
215 Research on Reducing Food Losses by Extending the Date of Minimum Durability on the Example of Cereal Products

Authors: Monika Trzaskowska, Dorota Zielinska, Anna Lepecka, Katarzyna Neffe-Skocinska, Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska

Abstract:

Microbiological quality and food safety are important food characteristics. Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers introduces the obligation to provide information on the 'use-by' date or the date of minimum durability (DMD). The second term is the date until which the properly stored or transported foodstuff retains its physical, chemical, microbiological and organoleptic properties. The date should be preceded by 'best before'. It is used for durable products, e.g., pasta. In relation to reducing food losses, the question may be asked whether products with the date of minimum durability currently declared retain quality and safety beyond this. The aim of the study was to assess the sensory quality and microbiological safety of selected cereal products, i.e., pasta and millet after DMD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the number of bacteria from the Enterobacteriaceae family and the number of yeast and mold (TYMC) on the last day of DMD and after 1 and 3 months of storage. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of DMD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of 14 differentiators and overall quality were defined and determined. In the tested samples of millet and pasta, no pathogenic bacteria Salmonella and Listeria monocytogenes were found. The value of the distinguishing features of selected quality and microbiological safety indicators on the last DMD day was in the range of about 3-1 log cfu/g. This demonstrates the good microbiological quality of the tested food. Comparing the products, a higher number of microorganisms was found in the samples of millet. After 3 months of storage, TVC decreased in millet, while in pasta, it was found to increase in value. In both products, the number of bacteria from the Enterobacretiaceae family decreased. In contrast, the number of TYMCs increased in samples of millet, and in pasta decreased. The intensity of sensory characteristic in the studied period varied. It remained at a similar level or increased. Millet was found to increase the intensity and flavor of 'cooked porridge' 3 months after DMD. Similarly, in the pasta, the smell and taste of 'cooked pasta' was more intense. To sum up, the researched products on the last day of the minimum durability date were characterized by very good microbiological and sensory quality, which was maintained for 3 months after this date. Based on these results, the date of minimum durability of tested products could be extended. The publication was financed on the basis of an agreement with the National Center for Research and Development No. Gospostrateg 1/385753/1/NCBR/2018 for the implementation and financing of the project under the strategic research and development program 'social and economic development of Poland in the conditions of globalizing markets – GOSPOSTRATEG - acronym PROM'.

Keywords: date of minimum durability, food losses, food quality and safety, millet, pasta

Procedia PDF Downloads 137
214 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 93
213 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 281
212 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 195
211 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 197
210 Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types

Authors: Anshu Siwach, Qianlai Zhuang, Ratul Baishya

Abstract:

Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics.

Keywords: moss cover, seasons, soil enzymes, soil microbial biomass, temperate forest types

Procedia PDF Downloads 39
209 Ballistic Performance of Magnesia Panels and Modular Wall Systems

Authors: Khin Thandar Soe, Mark Stephen Pulham

Abstract:

Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment.

Keywords: ballistics, small arms, gas gun, projectile, impact, wall panels, modular, magnesia cement

Procedia PDF Downloads 41
208 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 146
207 Self-Regulation and School Adjustment of Students with Autism Spectrum Disorder in Hong Kong

Authors: T. S. Terence Ma, Irene T. Ho

Abstract:

Conducting adequate assessment of the challenges students with ASD (Autism Spectrum Disorder) face and the support they need is imperative for promoting their school adjustment. Students with ASD often show deficits in communication, social interaction, emotional regulation, and self-management in learning. While targeting these areas in intervention is often helpful, we argue that not enough attention has been paid to weak self-regulation being a key factor underlying their manifest difficulty in all these areas. Self-regulation refers to one’s ability to moderate their behavioral or affective responses without assistance from others. Especially for students with high functioning autism, who often show problems not so much in acquiring the needed skills but rather in applying those skills appropriately in everyday problem-solving, self-regulation becomes a key to successful adjustment in daily life. Therefore, a greater understanding of the construct of self-regulation, its relationship with other daily skills, and its role in school functioning for students with ASD would generate insights on how students’ school adjustment could be promoted more effectively. There were two focuses in this study. Firstly, we examined the extent to which self-regulation is a distinct construct that is differentiable from other daily skills and the most salient indicators of this construct. Then we tested a model of relationships between self-regulation and other daily school skills as well as their relative and combined effects on school adjustment. A total of 1,345 Grade1 to Grade 6 students with ASD attending mainstream schools in Hong Kong participated in the research. In the first stage of the study, teachers filled out a questionnaire consisting of 136 items assessing a wide range of student skills in social, emotional and learning areas. Results from exploratory factor analysis (EFA) with 673 participants and subsequent confirmatory factor analysis (CFA) with another group of 672 participants showed that there were five distinct factors of school skills, namely (1) communication skills, (2) pro-social behavior, (3) emotional skills, (4) learning management, and (5) self-regulation. Five scales representing these skill dimensions were generated. In the second stage of the study, a model postulating the mediating role of self-regulation for the effects of the other four types of skills on school adjustment was tested with structural equation modeling (SEM). School adjustment was defined in terms of the extent to which the student is accepted well in school, with high engagement in school life and self-esteem as well as good interpersonal relationships. A 5-item scale was used to assess these aspects of school adjustment. Results showed that communication skills, pro-social behavior, emotional skills and learning management had significant effects on school adjustment only indirectly through self-regulation, and their total effects were found to be not high. The results indicate that support rendered to students with ASD focusing only on the training of well-defined skills is not adequate for promoting their inclusion in school. More attention should be paid to the training of self-management with an emphasis on the application of skills backed by self-regulation. Also, other non-skill factors are important in promoting inclusive education.

Keywords: autism, assessment, factor analysis, self-regulation, school adjustment

Procedia PDF Downloads 89
206 Methodology to Assess the Circularity of Industrial Processes

Authors: Bruna F. Oliveira, Teresa I. Gonçalves, Marcelo M. Sousa, Sandra M. Pimenta, Octávio F. Ramalho, José B. Cruz, Flávia V. Barbosa

Abstract:

The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.

Keywords: circular economy, circularity index, sustainability, tannery industry, zero-waste

Procedia PDF Downloads 44
205 Role of ASHA in Utilizing Maternal Health Care Services India, Evidences from National Rural Health Mission (NRHM)

Authors: Dolly Kumari, H. Lhungdim

Abstract:

Maternal health is one of the crucial health indicators for any country. 5th goal of Millennium Development Goals is also emphasising on improvement of maternal health. Soon after Independence government of India realizing the importance of maternal and child health care services, and took steps to strengthen in 1st and 2nd five year plans. In past decade the other health indicator which is life expectancy at birth has been observed remarkable improvement. But still maternal mortality is high in India and in some states it is observe much higher than national average. Government of India pour lots of fund and initiate National Rural Health Mission (NRHM) in 2005 to improve maternal health in country by providing affordable and accessible health care services. Accredited Social Heath Activist (ASHA) is one of the key components of the NRHM. Mainly ASHAs are selected female aged 25-45 years from village itself and accountable for the monitoring of maternal health care for the same village. ASHA are trained to works as an interface between the community and public health system. This study tries to assess the role of ASHA in utilizing maternal health care services and to see the level of awareness about benefits given under JSY scheme and utilization of those benefits by eligible women. For the study concurrent evaluation data from National Rural health Mission (NRHM), initiated by government of India in 2005 has been used. This study is based on 78205 currently married women from 70 different districts of India. Descriptive statistics, chi2 test and binary logistic regression have been used for analysis. The probability of institutional delivery increases by 2.03 times (p<0.001) while if ASHA arranged or helped in arranging transport facility the probability of institutional delivery is increased by 1.67 times (p<0.01) than if she is not arranging transport facility. Further if ASHA facilitated to get JSY card to the pregnant women probability of going for full ANC is increases by 1.36 times (p<0.05) than reference. However if ASHA discuses about institutional delivery and approaches to get register than probability of getting TT injection is 1.88 and 1.64 times (p<0.01) higher than that if she did not discus. Further, Probability of benefits from JSY schemes is 1.25 times (p<0.001) higher among women who get married after 18 years. The probability of benefits from JSY schemes is 1.25 times (p<0.001) higher among women who get married after 18 year of age than before 18 years, it is also 1.28 times (p<0.001) and 1.32 times (p<0.001) higher among women have 1 to 8 year of schooling and with 9 and above years of schooling respectively than the women who never attended school. Those women who are working have 1.13 times (p<0.001) higher probability of getting benefits from JSY scheme than not working women. Surprisingly women belongs to wealthiest quintile are .53times (P<0.001) less aware about JSY scheme. Results conclude that work done by ASHA has great influence on maternal health care utilization in India. But results also show that still substantial numbers of needed population are far from utilization of these services. Place of delivery is significantly influenced by referral and transport facility arranged by ASHA.

Keywords: institutional delivery, JSY beneficiaries, referral faculty, public health

Procedia PDF Downloads 307
204 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic

Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak

Abstract:

Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.

Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂

Procedia PDF Downloads 170