Search results for: thermal influence of boundary parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18338

Search results for: thermal influence of boundary parameters

15008 Giant Achievements in Food Processing

Authors: Farnaz Amidi Fazli

Abstract:

After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.

Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation

Procedia PDF Downloads 309
15007 Behavior of Laminated Plates under Mechanical Loading

Authors: Mahmoudi Noureddine

Abstract:

In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.

Keywords: bending, composite, laminate, plates, fem

Procedia PDF Downloads 392
15006 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study

Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti

Abstract:

This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.

Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss

Procedia PDF Downloads 46
15005 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 221
15004 Development and Characterization of Expandable TPEs Compounds for Footwear Applications

Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo

Abstract:

Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.

Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications

Procedia PDF Downloads 186
15003 An Artificial Neural Network Model Based Study of Seismic Wave

Authors: Hemant Kumar, Nilendu Das

Abstract:

A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.

Keywords: ANN, Bayesion class, earthquakes, IMD

Procedia PDF Downloads 111
15002 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 502
15001 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 104
15000 STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels

Authors: V. E. Selaule, R. M. Schoeman H. C. Z. Pienaar

Abstract:

Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel.

Keywords: PV orientation, PV panel, PV STC, Solar energy

Procedia PDF Downloads 458
14999 A Study on the Vegetative and Osmolyte Accumulation of Capsicum frutescens L. under Zinc Metal Stress

Authors: Ja’afar Umar, Adamu Aliyu Aliero

Abstract:

Plant growth, biochemical parameters, zinc metal concentrations were determined for Capsicum frutescens L. in response to varied concentration of zinc metal. The plant exhibited a decline in the vegetative parameters measured. Free proline and glycine betaine content increases with increasing concentration of zinc metal and differ significantly (P<0.05). It can be concluded that the osmolyte (pro and GB) accumulations, and high length of stem and wide leaf expansion are possible indicator of tolerance to heavy metals (Zinc) in Capsicum frutescens.

Keywords: zinc metal, osmolyte, Capsicum frutescens, stress

Procedia PDF Downloads 465
14998 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator

Procedia PDF Downloads 472
14997 A Preliminary Investigation on Factors that Influence Malaysian Road User’s Close Following Behaviour

Authors: Siti Hikmah Musthar, Ahmad Saifizul, Mohamed Rehan Karim, Jamilah Mohamad, Farah Fazlinda Mohamad

Abstract:

This paper aims to look at the situation of close following behaviour from the introductory phase before conducting a profound investigation and discussion on this subject. Close following behaviour is known as behaviour during when drivers follow front vehicle with headways lower than two-second. As such, the study of close-following is important due to the degree of negative consequences this behaviour can cause commonly identified as rear-end collision especially when road safety is concerned. This paper presents a preliminary results of close-following behaviour among selected respondents (n=515) in Peninsular Malaysia at selected highways and federal roads. Respondents were interviewed with survey questions tending to examine their actual driving behaviour related to close-following and their perception towards the subject of close following. Selected findings (four selected questions) are discussed in this paper of which identified as essential for deliberation (as opposed to other questions in the survey questionnaire) as far as a preliminary discussion is concerned. Through the statistical test of one-way ANOVA, study found that gender of drivers is not significant to influence drivers to close follow but instead, type of vehicle the respondent drives had more significant to influence drivers to have tendency to perform close following behaviour.

Keywords: close-following, driver behaviour, rear-end crash, road safety

Procedia PDF Downloads 403
14996 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 421
14995 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Chevreul's salt, factorial experimental design method, ammonium chloride, dissolution, optimization

Procedia PDF Downloads 228
14994 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw

Authors: Yu Chen

Abstract:

This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.

Keywords: failure pattern, particle deformation field, energy mechanism, PFC

Procedia PDF Downloads 199
14993 Numerical Study Pile Installation Disturbance Zone Effects on Excess Pore Pressure Dissipation

Authors: Kang Liu, Meng Liu, Meng-Long Wu, Da-Chang Yue, Hong-Yi Pan

Abstract:

The soil setup is an important factor affecting pile bearing capacity; there are many factors that influence it, all of which are closely related to pile construction disturbances. During pile installation in soil, a significant amount of excess pore pressure is generated, creating disturbance zones around the pile. The dissipation rate of excess pore pressure is an important factor influencing the pile setup. The paper aims to examine how alterations in parameters within disturbance zones affect the dissipation of excess pore pressure. An axisymmetric FE model is used to simulate pile installation in clay, subsequently consolidation using Plaxis 3D. The influence of disturbed zone on setup is verified, by comparing the parametric studies in uniform field and non-uniform field. Three types of consolidation are employed: consolidation in three directions, vertical consolidation, horizontal consolidation. The results of the parametric study show that the permeability coefficient decreases, soil stiffness decreases, and reference pressure increases in the disturbance zone, resulting in an increase in the dissipation time of excess pore pressure and exhibiting a noticeable threshold phenomenon, which has been commonly overlooked in previous literature. The research in this paper suggests that significant thresholds occur when the coefficient of permeability decreases to half of the original site's value for three-directional and horizontal consolidation within the disturbed zone. Similarly, the threshold for vertical consolidation is observed when the coefficient of permeability decreases to one-fourth of the original site's value. Especially in pile setup research, consolidation is assumed to be horizontal; the study findings suggest that horizontal consolidation has experienced notable alterations as a result of the presence of disturbed zones. Furthermore, the selection of pile installation methods proves to be critical. A nonlinearity excess pore pressure formula is proposed based on cavity expansion theory, which includes the distribution of soil profile modulus with depth.

Keywords: pile setup, threshold value effect, installation effects, uniform field, non-uniform field

Procedia PDF Downloads 24
14992 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 164
14991 Performance of Bored Pile on Alluvial Deposit

Authors: K. Raja Rajan, D. Nagarajan

Abstract:

Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties.

Keywords: end bearing, pile load test, settlement, shaft friction

Procedia PDF Downloads 241
14990 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 182
14989 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 267
14988 Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs

Authors: U.K. Sarkar, G. Karnatak, P. Mishal, Lianthuamluaia, S. Kumari, S.K. Das, B.K. Das

Abstract:

Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity.

Keywords: biometeorology, inland fisheries, aquatic ecosystem, modeling, India

Procedia PDF Downloads 179
14987 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.

Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement

Procedia PDF Downloads 125
14986 Evaluating the Influence of Financial Technology (FinTech) on Sustainable Finance: A Comprehensive Global Analysis

Authors: Muhammad Kashif

Abstract:

The primary aim of this paper is to investigate the influence of financial technology (FinTech) on sustainable finance. The sample for this study spans from 2010 to 2021, encompassing data from 89 countries worldwide. The study employed two-stage least squares (2SLS) regression approach with the instrumental variables and validated the findings using a two-step system generalized method of moments (GMM). The findings indicate that fintech has a significant favorable impact on sustainable finance. While other factors such as institutional quality, socio-economic condition, and renewable energy have a significant and beneficial influence on the trajectory of sustainable finance, except globalization's impact is positive but insignificant. Furthermore, fintech is crucial in driving the transition toward a sustainable future characterized by a lower carbon economy. The study found that fintech has extensive application across various sectors of sustainable finance and has substantial potential to create long-term positive effects on sustainable finance. Fintech can integrate extensively with other technologies to facilitate diversified growth in sustainable finance. Additionally, this study highlights fintech-related trends and research opportunities in sustainable finance, showing how these can promote each other worldwide with important policy implications for countries looking to advance sustainable finance through technology.

Keywords: sustainable development goals (SDGs), financial technology (FinTech), genuine savings index (GSI), financial stability index, sustainable finance

Procedia PDF Downloads 101
14985 Comparison for Some Elastic and Mechanical Properties of Plutonium Dioxide

Authors: M. Guler, E. Guler

Abstract:

We report some elastic parameters of cubic fluorite type neptunium dioxide (NpO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other relevant elastic parameters were also calculated during research. After calculations, we have compared our results with the available theoretical data. Our results agree well with the previous theoretical findings of the considered quantities of NpO2.

Keywords: NpO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 319
14984 Closed-Form Solutions for Nanobeams Based on the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement are presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, nanobeams, nonlocal elasticity, closed-form solutions

Procedia PDF Downloads 356
14983 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 106
14982 Development of Potato Starch Based Active Packaging Films Loaded with Antioxidants and Its Effect on Shelf Life of Beef

Authors: Bilal Ahmad Ashwar, Inam u nisa, Asima Shah, Adil Gani, Farooq Ahmad Masoodi

Abstract:

The effects of 5% BHT and green tea extracts (GTE) on the physical, barrier, mechanical, thermal and antioxidant properties of potato starch films were investigated. Results showed both BHT and GTE significantly lowered solubility of films. Addition of BHT significantly decreased water vapour transmission rate. Both BHT and GTE promoted significant increase in the elastic modulus but a decrease in % EAB, however BHT was more effective in increasing elastic modulus. Increase in glass transition temperature (Tg) and enthalpy of transition (ΔH) of films was observed with the incorporation of GTE and BHT. Scanning electron microscopy (SEM) revealed smooth surface of the films. The DPPH radical scavenging ability of both BHT and GTE films were stronger in fatty food stimulant (95% ethanol. The GTE and BHT films were individually applied to fresh beef samples and were stored at 4 0C and room temperature for 10 days. Metmyoglobin formation and lipid oxidation (TBARS) were monitored periodically. The addition of GTE extracts and BHT resulted in decreases in metmyoglobin and TBARS values. We conclude that extracts of GTE and BHT have potential as preservatives for fresh beef.

Keywords: starch film, WVTR, tensile properties, SEM, thermal analysis, DPPH scavenging activity, TBARS, metmyoglobin

Procedia PDF Downloads 576
14981 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 289
14980 Monetary Policy and Assets Prices in Nigeria: Testing for the Direction of Relationship

Authors: Jameelah Omolara Yaqub

Abstract:

One of the main reasons for the existence of central bank is that it is believed that central banks have some influence on private sector decisions which will enable the Central Bank to achieve some of its objectives especially that of stable price and economic growth. By the assumption of the New Keynesian theory that prices are fully flexible in the short run, the central bank can temporarily influence real interest rate and, therefore, have an effect on real output in addition to nominal prices. There is, therefore, the need for the Central Bank to monitor, respond to, and influence private sector decisions appropriately. This thus shows that the Central Bank and the private sector will both affect and be affected by each other implying considerable interdependence between the sectors. The interdependence may be simultaneous or not depending on the level of information, readily available and how sensitive prices are to agents’ expectations about the future. The aim of this paper is, therefore, to determine whether the interdependence between asset prices and monetary policy are simultaneous or not and how important is this relationship. Studies on the effects of monetary policy have largely used VAR models to identify the interdependence but most have found small effects of interaction. Some earlier studies have ignored the possibility of simultaneous interdependence while those that have allowed for simultaneous interdependence used data from developed economies only. This study, therefore, extends the literature by using data from a developing economy where information might not be readily available to influence agents’ expectation. In this study, the direction of relationship among variables of interest will be tested by carrying out the Granger causality test. Thereafter, the interaction between asset prices and monetary policy in Nigeria will be tested. Asset prices will be represented by the NSE index as well as real estate prices while monetary policy will be represented by money supply and the MPR respectively. The VAR model will be used to analyse the relationship between the variables in order to take account of potential simultaneity of interdependence. The study will cover the period between 1980 and 2014 due to data availability. It is believed that the outcome of the research will guide monetary policymakers especially the CBN to effectively influence the private sector decisions and thereby achieve its objectives of price stability and economic growth.

Keywords: asset prices, granger causality, monetary policy rate, Nigeria

Procedia PDF Downloads 202
14979 Assessing the Effects of Land Use Spatial Structure on Urban Heat Island Using New Launched Remote Sensing in Shenzhen, China

Authors: Kai Liua, Hongbo Sua, Weimin Wangb, Hong Liangb

Abstract:

Urban heat island (UHI) has attracted attention around the world since they profoundly affect human life and climatological. Better understanding the effects of landscape pattern on UHI is crucial for improving the ecological security and sustainability of cities. This study aims to investigate how landscape composition and configuration would affect UHI in Shenzhen, China, based on the analysis of land surface temperature (LST) in relation landscape metrics, mainly with the aid of three new satellite sensors launched by China. HJ-1B satellite system was utilized to estimate surface temperature and comprehensively explore the urban thermal spatial pattern. The landscape metrics of the high spatial resolution remote sensing satellites (GF-1 and ZY-3) were compared and analyzed to validate the performance of the new launched satellite sensors. Results show that the mean LST is correlated with main landscape metrics involving class-based metrics and landscape-based metrics, suggesting that the landscape composition and the spatial configuration both influence UHI. These relationships also reveal that urban green has a significant effect in mitigating UHI in Shenzhen due to its homogeneous spatial distribution and large spatial extent. Overall, our study not only confirm the applicability and effectiveness of the HJ-1B, GF-1 and ZY-3 satellite system for studying UHI but also reveal the impacts of the urban spatial structure on UHI, which is meaningful for the planning and management of the urban environment.

Keywords: urban heat island, Shenzhen, new remote sensing sensor, remote sensing satellites

Procedia PDF Downloads 392