Search results for: solar thermal applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10224

Search results for: solar thermal applications

6894 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter

Procedia PDF Downloads 381
6893 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources

Authors: Amin Khamoosh, Hamed Faramarzifar

Abstract:

In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.

Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques

Procedia PDF Downloads 49
6892 Effect of Baffles on the Cooling of Electronic Components

Authors: O. Bendermel, C. Seladji, M. Khaouani

Abstract:

In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.

Keywords: electronic components, baffles, cooling, fluids engineering

Procedia PDF Downloads 289
6891 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 87
6890 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 230
6889 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 540
6888 Design of a Surveillance Drone with Computer Aided Durability

Authors: Maram Shahad Dana Anfal

Abstract:

This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.

Keywords: drone, material, solidwork, hypermesh

Procedia PDF Downloads 133
6887 Evaluation of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essadki, Tamou Nasser

Abstract:

The purpose of this paper is the evaluation of photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturbing and observing (P&O), incremental conductance (INC) and fuzzy logic controller (FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: fuzzy logic controller, FLC, hill climbing, HC, incremental conductance (INC), perturb and observe (P&O), maximum power point, MPP, maximum power point tracking, MPPT

Procedia PDF Downloads 506
6886 Heat Transfer Performance for Turbulent Flow through a Tube Using Baffles

Authors: Amina Benabderrahmane, Abdelylah Benazza, Samir Laouedj

Abstract:

Three dimensional numerical investigation of heat transfer enhancement inside a non-uniformly heated parabolic trough solar collector fitted with baffles under turbulent flow was studied in the current paper. Molten salt is used as heat transfer fluid and simulations are carried out in ANSYS computational fluid dynamics (CFD). The present data was validating by the empirical correlations available in the literatures and good agreement was obtained. The Nusselt number and friction factor values for using baffles are considerably higher than that for smooth pipe. The emplacement and the distance between two consecutive baffles have an effect non-negligible on heat transfer characteristics; the results demonstrate that the temperature gradient reduces with the inclusion of inserts.

Keywords: Baffles, heat transfer enhancement, molten salt, Monte Carlo ray trace technique, numerical investigation

Procedia PDF Downloads 294
6885 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 129
6884 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 511
6883 Structural, Optical and Electrical Properties of PbS Thin Films Deposited by CBD at Different Bath pH

Authors: Lynda Beddek, Nadhir Attaf, Mohamed Salah Aida

Abstract:

PbS thin films were grown on glass substrates by chemical bath deposition (CBD). The precursor aqueous bath contained 1 mole of lead nitrate, 1 mole of Thiourea and complexing agents (triethanolamine (TEA) and NaOH). Bath temperature and deposition time were fixed at 60°C and 3 hours, respectively. However, the PH of bath was varied from 10.5 to 12.5. Structural properties of the deposited films were characterized by X-ray diffraction and Raman spectroscopy. The preferred direction was revealed to be along (111) and the PbS crystal structure was confirmed. Strains and grains sizes were also calculated. Optical studies showed that films thicknesses do not exceed 600nm. Energy band gap values of films decreases with increase in pH and reached a value ~ 0.4eV at pH equal 12.5. The small value of the energy band gap makes PbS one of the most interesting candidate for solar energy conversion near the infrared ray.

Keywords: CBD, PbS, pH, thin films, x-ray diffraction

Procedia PDF Downloads 438
6882 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 299
6881 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real-time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Therefore, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Canny edge detection is one of the common blocks in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: high level synthesis, canny edge detection, hardware accelerators, computer vision

Procedia PDF Downloads 475
6880 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 292
6879 Augmented Reality in Advertising and Brand Communication: An Experimental Study

Authors: O. Mauroner, L. Le, S. Best

Abstract:

Digital technologies offer many opportunities in the design and implementation of brand communication and advertising. Augmented reality (AR) is an innovative technology in marketing communication that focuses on the fact that virtual interaction with a product ad offers additional value to consumers. AR enables consumers to obtain (almost) real product experiences by the way of virtual information even before the purchase of a certain product. Aim of AR applications in relation with advertising is in-depth examination of product characteristics to enhance product knowledge as well as brand knowledge. Interactive design of advertising provides observers with an intense examination of a specific advertising message and therefore leads to better brand knowledge. The elaboration likelihood model and the central route to persuasion strongly support this argumentation. Nevertheless, AR in brand communication is still in an initial stage and therefore scientific findings about the impact of AR on information processing and brand attitude are rare. The aim of this paper is to empirically investigate the potential of AR applications in combination with traditional print advertising. To that effect an experimental design with different levels of interactivity is built to measure the impact of interactivity of an ad on different variables o advertising effectiveness.

Keywords: advertising effectiveness, augmented reality, brand communication, brand recall

Procedia PDF Downloads 295
6878 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy

Authors: Edward B. Ssekulima, Amir Etemadi

Abstract:

This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.

Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources

Procedia PDF Downloads 115
6877 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants

Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer

Abstract:

Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.

Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 123
6876 Artificial Intelligence for Cloud Computing

Authors: Sandesh Achar

Abstract:

Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things

Procedia PDF Downloads 103
6875 Social Networking Application: What Is Their Quality and How Can They Be Adopted in Open Distance Learning Environments?

Authors: Asteria Nsamba

Abstract:

Social networking applications and tools have become compelling platforms for generating and sharing knowledge across the world. Social networking applications and tools refer to a variety of social media platforms which include Facebook, Twitter WhatsApp, blogs and Wikis. The most popular of these platforms are Facebook, with 2.41 billion active users on a monthly basis, followed by WhatsApp with 1.6 billion users and Twitter with 330 million users. These communication platforms have not only impacted social lives but have also impacted students’ learning, across different delivery modes in higher education: distance, conventional and blended learning modes. With this amount of interest in these platforms, knowledge sharing has gained importance within the context in which it is required. In open distance learning (ODL) contexts, social networking platforms can offer students and teachers the platform on which to create and share knowledge, and form learning collaborations. Thus, they can serve as support mechanisms to increase interactions and reduce isolation and loneliness inherent in ODL. Despite this potential and opportunity, research indicates that many ODL teachers are not inclined to using social media tools in learning. Although it is unclear why these tools are uncommon in these environments, concerns raised in the literature have indicated that many teachers have not mastered the art of teaching with technology. Using technological, pedagogical content knowledge (TPCK) and product quality theory, and Bloom’s Taxonomy as lenses, this paper is aimed at; firstly, assessing the quality of three social media applications: Facebook, Twitter and WhatsApp, in order to determine the extent to which they are suitable platforms for teaching and learning, in terms of content generation, information sharing and learning collaborations. Secondly, the paper demonstrates the application of teaching, learning and assessment using Bloom’s Taxonomy.

Keywords: distance education, quality, social networking tools, TPACK

Procedia PDF Downloads 119
6874 More Than a Game: An Educational Application Where Students Compete to Learn

Authors: Kadir Özsoy

Abstract:

Creating a moderately competitive learning environment is believed to have positive effects on student interest and motivation. The best way today to attract young learners to get involved in a fun, competitive learning experience is possible through mobile applications as these learners mostly rely on games and applications on their phones and tablets to have fun, communicate, look for information and study. In this study, a mobile application called ‘QuizUp’ is used to create a specific game topic for elementary level students at Anadolu University Preparatory School. The topic is specially designed with weekly-added questions in accordance with the course syllabus. Students challenge their classmates or randomly chosen opponents to answer questions related to their course subjects. They also chat and post on the topic’s wall in English. The study aims at finding out students’ perceptions towards the use of the application as a classroom and extra-curricular activity through a survey. The study concludes that educational games boost students’ motivation, lead to increased effort, and positively change their studying habits.

Keywords: competitive learning, educational application, effort, motivation 'QuizUp', study habits

Procedia PDF Downloads 354
6873 Quantum Dot Biosensing for Advancing Precision Cancer Detection

Authors: Sourav Sarkar, Manashjit Gogoi

Abstract:

In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.

Keywords: quantum dots, biosensing, cancer, device

Procedia PDF Downloads 52
6872 3-Dimensional Contamination Conceptual Site Model: A Case Study Illustrating the Multiple Applications of Developing and Maintaining a 3D Contamination Model during an Active Remediation Project on a Former Urban Gasworks Site

Authors: Duncan Fraser

Abstract:

A 3-Dimensional (3D) conceptual site model was developed using the Leapfrog Works® platform utilising a comprehensive historical dataset for a large former Gasworks site in Fitzroy, Melbourne. The gasworks had been constructed across two fractured geological units with varying hydraulic conductivities. A Newer Volcanic (basaltic) outcrop covered approximately half of the site and was overlying a fractured Melbourne formation (Siltstone) bedrock outcropping over the remaining portion. During the investigative phase of works, a dense non-aqueous phase liquid (DNAPL) plume (coal tar) was identified within both geological units in the subsurface originating from multiple sources, including gasholders, tar wells, condensers, and leaking pipework. The first stage of model development was undertaken to determine the horizontal and vertical extents of the coal tar in the subsurface and assess the potential causality between potential sources, plume location, and site geology. Concentrations of key contaminants of interest (COIs) were also interpolated within Leapfrog to refine the distribution of contaminated soils. The model was subsequently used to develop a robust soil remediation strategy and achieve endorsement from an Environmental Auditor. A change in project scope, following the removal and validation of the three former gasholders, necessitated the additional excavation of a significant volume of residual contaminated rock to allow for the future construction of two-story underground basements. To assess financial liabilities associated with the offsite disposal or thermal treatment of material, the 3D model was updated with three years of additional analytical data from the active remediation phase of works. Chemical concentrations and the residual tar plume within the rock fractures were modelled to pre-classify the in-situ material and enhance separation strategies to prevent the unnecessary treatment of material and reduce costs.

Keywords: 3D model, contaminated land, Leapfrog, remediation

Procedia PDF Downloads 127
6871 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 104
6870 On the Market Prospects of Long-Term Electricity Storages

Authors: Reinhard Haas, Amela Ajanovic

Abstract:

In recent years especially electricity generation from intermittent sources like wind and solar has increased remarkably. To balance electricity supply over time calls for storages has been launched. Because intermittency also exists over longer periods – months, years, especially the need for long-term electricity storages is discussed. The major conclusions of our analysis are: (i) Despite many calls for a prophylactic construction of new storage capacities with respect to all centralized long-term storage technologies the future perspectives will be much less promising than currently indicated in several papers and discussions; (ii) new long term hydro storages will not become economically attractive in general in the next decades; however, daily storages will remain the cheapest option and the most likely to be competitive; (iii) For PtG-technologies it will also become very hard to compete in the electricity markets despite a high technological learning potential. Yet, for hydrogen and methane there are prospects for use in the transport sector.

Keywords: storages, electricity markets, power-to-gas, hydro pump storages, economics

Procedia PDF Downloads 475
6869 Analyzing the Use of Augmented Reality and Image Recognition in Cultural Education: Use Case of Sintra Palace Treasure Hunt Application

Authors: Marek Maruszczak

Abstract:

Gamified applications have been used successfully in education for years. The rapid development of technologies such as augmented reality and image recognition increases their availability and reduces their prices. Thus, there is an increasing possibility and need for a wide use of such applications in education. The main purpose of this article is to present the effects of work on a mobile application with augmented reality, the aim of which is to motivate tourists to pay more attention to the attractions and increase the likelihood of moving from one attraction to the next while visiting the Palácio Nacional de Sintra in Portugal. Work on the application was carried out together with the employees of Parques de Sintra from 2019 to 2021. Their effect was the preparation of a mobile application using augmented reality and image recognition. The application was tested on the palace premises by both Parques de Sintra employees and tourists visiting Palácio Nacional de Sintra. The collected conclusions allowed for the formulation of good practices and guidelines that can be used when designing gamified apps for the purpose of cultural education.

Keywords: augmented reality, cultural education, gamification, image recognition, mobile games

Procedia PDF Downloads 187
6868 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 249
6867 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band

Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz

Abstract:

This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.

Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi

Procedia PDF Downloads 115
6866 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries

Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike

Abstract:

Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.

Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes

Procedia PDF Downloads 184
6865 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 183